The fundamental group of a visual boundary versus the fundamental group at infinity

被引:5
|
作者
Conner, GR
Fischer, H [1 ]
机构
[1] Ball State Univ, Dept Math Sci, Muncie, IN 47306 USA
[2] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
关键词
fundamental group; CAT(0); non-positive curvature; visual boundary; fundamental group at infinity;
D O I
10.1016/S0166-8641(02)00138-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There is a natural homomorphism from the fundamental group of the boundary of any non-positively curved geodesic space to its fundamental group at infinity. We will show that this homomorphism is an isomorphism in case the boundary admits a universal covering space, and that it is injective in case the boundary is one-dimensional. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:73 / 78
页数:6
相关论文
共 50 条
  • [41] Dressing preserving the fundamental group
    Dorfmeister, J
    Kilian, A
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2005, 23 (02) : 176 - 204
  • [42] On the fundamental group of a schurian algebra
    Bustamante, JC
    [J]. COMMUNICATIONS IN ALGEBRA, 2002, 30 (11) : 5307 - 5329
  • [43] Fundamental group in positive characteristic
    Kumar, Manish
    [J]. JOURNAL OF ALGEBRA, 2008, 319 (12) : 5178 - 5207
  • [44] Ricci Curvature and Fundamental Group
    Yuanlong XIN (Dedicated to the memory of Shiing-Shen Chern)
    [J]. Chinese Annals of Mathematics, 2006, (02) : 113 - 120
  • [45] Connected gradings and the fundamental group
    Cibils, Claude
    Julia Redondo, Maria
    Solotar, Andrea
    [J]. ALGEBRA & NUMBER THEORY, 2010, 4 (05) : 625 - 648
  • [46] FILL RADIUS AND THE FUNDAMENTAL GROUP
    Ramachandran, Mohan
    Wolfson, Jon
    [J]. JOURNAL OF TOPOLOGY AND ANALYSIS, 2010, 2 (01) : 99 - 107
  • [47] Fundamental group of the digital circle
    Singh, Pooja
    Masood, Dania
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2018, 11 (06)
  • [48] The fundamental group of the circle is trivial
    Deloup, F
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2005, 112 (05): : 417 - 425
  • [49] Parallelizable manifolds and the fundamental group
    Johnson, FEA
    Walton, JP
    [J]. MATHEMATIKA, 2000, 47 (93-94) : 165 - 172
  • [50] On the existence of the fundamental group scheme
    Antei, Marco
    Emsalem, Michel
    Gasbarri, Carlo
    [J]. EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2020, 4