Microstructural evolution and mechanical properties of a low-carbon low-alloy steel produced by wire arc additive manufacturing

被引:144
|
作者
Rafieazad, Mehran [1 ]
Ghaffari, Mahya [1 ]
Nemani, Alireza Vahedi [1 ]
Nasiri, Ali [1 ]
机构
[1] Mem Univ Newfoundland, Fac Engn & Appl Sci, St John, NF A1B 3X5, Canada
来源
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY | 2019年 / 105卷 / 5-6期
基金
加拿大自然科学与工程研究理事会;
关键词
Additive manufacturing (AM); Wire arc additive manufacturing (WAAM); Low-carbon low-alloy steel; Microstructure; Mechanical properties; HEAT-AFFECTED ZONE; THIN-WALLED PARTS; ANISOTROPIC TENSILE BEHAVIOR; OVERLAPPING MODEL; RESIDUAL-STRESS; METAL TRANSFER; TI-6AL-4V; TOUGHNESS; DEPOSITION; MARTENSITE;
D O I
10.1007/s00170-019-04393-8
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The emerging technology of wire arc additive manufacturing (WAAM) has been enthusiastically embraced in recent years mainly by the welding community to fabricate various grades of structural materials. In this study, ER70S-6 low-carbon low-alloy steel wall was manufactured by WAAM method, utilizing a gas metal arc welding (GMAW) torch translated by a six-axis robotic arm, and employing advanced surface tension transfer (STT) mode. The dominant microstructure of the fabricated part contained randomly oriented fine polygonal ferrite and a low-volume fraction of lamellar pearlite as the primary micro-constituents. Additionally, a small content of bainite and acicular ferrite were also detected along the melt-pool boundaries, where the material undergoes a faster cooling rate during solidification in comparison with the center of the melt pool. Mechanical properties of the part, studied at different orientations relative to the building direction, revealed a comparable tensile strength along the deposition (horizontal) direction and the building (vertical) direction of the fabricated part (similar to 400 MPa and similar to 500 MPa for the yield and ultimate tensile strengths, respectively). However, the obtained plastic tensile strain at failure along the horizontal direction was nearly three times higher than that of the vertical direction, implying some extent of anisotropy in ductility. The reduced ductility of the part along the building direction was associated with the higher density of the interpass regions and the melt-pool boundaries in the vertical direction, containing heat-affected zones with coarser grain structure, brittle martensite-austenite constituent, and possibly a higher density of discontinuities.
引用
收藏
页码:2121 / 2134
页数:14
相关论文
共 50 条
  • [21] Microstructural Evolution and Mechanical Properties of 2219 Aluminum Alloy Deposited by Wire and Arc Additive Manufacturing
    Jin, Peng
    Ren, Huisheng
    Liu, Yibo
    Sun, Qingjie
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (09)
  • [22] Microstructure and Mechanical Properties of High-Strength, Low-Alloy Steel Thin-Wall Fabricated with Wire and Arc Additive Manufacturing
    Song, Kaijie
    Lin, Zidong
    Fa, Yongzhe
    Zhao, Xuefeng
    Zhu, Ziqian
    Ya, Wei
    Sun, Zhen
    Yu, Xinghua
    METALS, 2023, 13 (04)
  • [23] INFLUENCE OF SULFUR ON MECHANICAL-PROPERTIES OF STRUCTURAL LOW-CARBON LOW-ALLOY STEEL
    SHULTE, YA
    TITARENK.VA
    SHALOMEY.AA
    LUNEV, VV
    RUSSIAN METALLURGY, 1973, (04): : 113 - 116
  • [24] The static and dynamic mechanical properties of a new low-carbon, low-alloy austempered steel
    Martis, Codrick J.
    Putatunda, Susil K.
    Boileau, James
    Spray, John G.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2014, 589 : 280 - 287
  • [25] Effect of cooling rate on microstructure and mechanical properties of a low-carbon low-alloy steel
    Liang, Guofang
    Tan, Qiyang
    Liu, Yingang
    Wu, Tao
    Yang, Xianliang
    Tian, Zhiqiang
    Atrens, Andrej
    Zhang, Ming-Xing
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (05) : 3995 - 4005
  • [26] Effect of cooling rate on microstructure and mechanical properties of a low-carbon low-alloy steel
    Guofang Liang
    Qiyang Tan
    Yingang Liu
    Tao Wu
    Xianliang Yang
    Zhiqiang Tian
    Andrej Atrens
    Ming-Xing Zhang
    Journal of Materials Science, 2021, 56 : 3995 - 4005
  • [27] MECHANICAL PROPERTIES OF LOW-CARBON LOW-ALLOY BAINITIC STEELS
    OHMORI, Y
    OHTANI, H
    KUNITAKE, T
    TRANSACTIONS OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1972, 12 (02) : 146 - &
  • [28] MICROSTRUCTURAL AND KINETIC STUDIES OF REVERSE TRANSFORMATION IN A LOW-CARBON LOW-ALLOY STEEL
    MATSUDA, S
    OKAMURA, Y
    TRANSACTIONS OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1974, 14 (05) : 363 - 368
  • [29] Pulsed gas metal arc additive manufacturing of low-carbon steel: Microstructure observations and mechanical properties
    Mohammadi, Javad
    Dashtgerd, Iman
    Riahi, Reza
    Mostafaei, Amir
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [30] MICROSTRUCTURE AND MECHANICAL PROPERTIES OF FREE-SINTERING LOW-ALLOY STEEL PRODUCED BY THREE ADDITIVE MANUFACTURING METHODS
    Murphy, Thomas
    Schade, Christopher
    Horvay, Kerri
    INTERNATIONAL JOURNAL OF POWDER METALLURGY, 2023, 59 (04): : 31 - 45