Perfusion kinetics in human brain tumor with DCE-MRI derived model and CFD analysis

被引:31
|
作者
Bhandari, A. [1 ]
Bansal, A. [2 ]
Singh, A. [3 ,4 ]
Sinha, N. [1 ]
机构
[1] Indian Inst Technol, Dept Mech Engn, Kanpur 208016, Uttar Pradesh, India
[2] Indian Inst Technol, Dept Mech & Ind Engn, Roorkee 247677, Uttar Pradesh, India
[3] Indian Inst Technol, Ctr Biomed Engn, Delhi 110016, India
[4] All India Inst Med Sci, Dept Biomed Engn, Delhi 110016, India
关键词
Voxelized model; Human brain tumor; Arterial input function; Perfusion; IFP; IFV; Tracer transport; DCE-MRI; CFD; CONTRAST-ENHANCED MRI; SOLID TUMORS; INTERSTITIAL TRANSPORT; NEOPLASTIC TISSUES; DELIVERY; FLUID; MACROMOLECULES; DOXORUBICIN; CONVECTION; DIFFUSION;
D O I
10.1016/j.jbiomech.2017.05.017
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Cancer is one of the leading causes of death all over the world. Among the strategies that are used for cancer treatment, the effectiveness of chemotherapy is often hindered by factors such as irregular and non-uniform uptake of drugs inside tumor. Thus, accurate prediction of drug transport and deposition inside tumor is crucial for increasing the effectiveness of chemotherapeutic treatment. In this study, a computational model of human brain tumor is developed that incorporates dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) data into a voxelized porous media model. The model takes into account realistic transport and perfusion kinetics parameters together with realistic heterogeneous tumor vasculature and accurate arterial input function (AIF), which makes it patient specific. The computational results for interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and tracer concentration show good agreement with the experimental results. The computational model can be extended further for predicting the deposition of chemotherapeutic drugs in tumor environment as well as selection of the best chemotherapeutic drug for a specific patient. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:80 / 89
页数:10
相关论文
共 50 条
  • [31] DCE Perfusion MRI for Renal Tumor Subtyping
    Wu, Y.
    Murillo, P.
    Shah, K.
    [J]. MEDICAL PHYSICS, 2017, 44 (06) : 3054 - 3054
  • [32] Software environment for fast DCE-MRI analysis
    Hoetker, A. M.
    Mildenberger, P.
    Dueber, Ch.
    Oberholzer, K.
    [J]. WORLD CONGRESS ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING, VOL 25, PT 5, 2009, 25 : 162 - 164
  • [33] Model selection for analysis of dynamic contrast enhanced MRI (DCE-MRI) data.
    Yankeelov T
    Welch E B
    Chakravarthy B
    Lee R
    Freehardt D
    Mayer, I
    Meszoely, I
    Kelly M
    Means-Powell J
    Gore J
    [J]. BREAST CANCER RESEARCH AND TREATMENT, 2007, 106 : S45 - S45
  • [34] Computerized breast parenchymal analysis on DCE-MRI
    Li, Hui
    Giger, Maryellen L.
    Yuan, Yading
    Jansen, Sanaz A.
    Lan, Li
    Bhooshan, Neha
    Newstead, Gillian M.
    [J]. MEDICAL IMAGING 2009: COMPUTER-AIDED DIAGNOSIS, 2009, 7260
  • [35] Quantitative Hepatic Perfusion Modeling Using DCE-MRI With Sequential Breathholds
    Bultman, Eric M.
    Brodsky, Ethan K.
    Horng, Debra E.
    Irarrazaval, Pablo
    Schelman, William R.
    Block, Walter F.
    Reeder, Scott B.
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 39 (04) : 853 - 865
  • [36] DCE-MRI perfusion predicts pseudoprogression in metastatic melanoma treated with immunotherapy
    Yoshie Umemura
    Diane Wang
    Kyung K. Peck
    Jessica Flynn
    Zhigang Zhang
    Robin Fatovic
    Erik S. Anderson
    Kathryn Beal
    Alexander N. Shoushtari
    Thomas Kaley
    Robert J. Young
    [J]. Journal of Neuro-Oncology, 2020, 146 : 339 - 346
  • [37] DCE-MRI perfusion predicts pseudoprogression in metastatic melanoma treated with immunotherapy
    Umemura, Yoshie
    Wang, Diane
    Peck, Kyung K.
    Flynn, Jessica
    Zhang, Zhigang
    Fatovic, Robin
    Anderson, Erik S.
    Beal, Kathryn
    Shoushtari, Alexander N.
    Kaley, Thomas
    Young, Robert J.
    [J]. JOURNAL OF NEURO-ONCOLOGY, 2020, 146 (02) : 339 - 346
  • [38] Comparison of permeability estimates derived from DCE-MRI and DCE-CT data in a rodent stroke model
    Gao, M.
    Wong, T.
    Leung, J.
    McGregor, M.
    Sokol, N.
    Mikulis, D.
    Kassner, A.
    [J]. STROKE, 2012, 43 (11) : E128 - E128
  • [39] DCE-MRI Perfusion and Permeability Parameters as predictors of tumor response to CCRT in Patients with locally advanced NSCLC
    Xiuli Tao
    Lvhua Wang
    Zhouguang Hui
    Li Liu
    Feng Ye
    Ying Song
    Yu Tang
    Yu Men
    Tryphon Lambrou
    Zihua Su
    Xiao Xu
    Han Ouyang
    Ning Wu
    [J]. Scientific Reports, 6
  • [40] Quantifying Perfusion Properties with DCE-MRI Using a Dictionary Matching Approach
    Satyam Ghodasara
    Yong Chen
    Shivani Pahwa
    Mark A. Griswold
    Nicole Seiberlich
    Katherine L. Wright
    Vikas Gulani
    [J]. Scientific Reports, 10