Relaxation properties of (1+1)-dimensional driven interfaces in disordered media

被引:0
|
作者
Díaz-Sánchez, A [1 ]
Pérez-Garrido, A [1 ]
机构
[1] Univ Politecn Cartagena, Dept Fis Aplicada, E-30202 Murcia, Spain
来源
关键词
D O I
10.1088/0305-4470/37/41/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the Kardar-Parisi-Zhang equation with quenched noise in order to study the relaxation properties of driven interfaces in disordered media. For lambda not equal 0 this equation belongs to the directed percolation depinning universality class and for gimel = 0 it belongs to the quenched Edwards-Wilkinson universality class. We study the Fourier transform of the two-time autocorrelation function of the interface height C-k(t', t). These functions depend on the difference of times t-t' in the steady-state regime. We find a two-step relaxation decay in this regime for both universality classes. The long time tail can be fitted by a stretched exponential function, where the exponent beta depends on the universality class. The relaxation time and the wavelength of the Fourier transform, where the two-step relaxation is lost, are related to the length of the pinned regions. The stretched exponential relaxation is caused by the existence of pinned regions which is a direct consequence of the quenched noise.
引用
收藏
页码:9621 / 9630
页数:10
相关论文
共 50 条
  • [21] Extremal statistics of curved growing interfaces in 1+1 dimensions
    Rambeau, J.
    Schehr, G.
    EPL, 2010, 91 (06)
  • [22] CANONICAL QUANTIZATION OF 1+1 DIMENSIONAL GRAVITY
    BANKS, T
    SUSSKIND, L
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1984, 23 (05) : 475 - 496
  • [23] The path integral for (1+1)-dimensional QCD
    Jahn, O
    Kraus, T
    Seeger, M
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (24): : 4445 - 4459
  • [24] Viscosity effects in (1+1)-dimensional cosmologies
    Chimento, LP
    Cossarini, AE
    CLASSICAL AND QUANTUM GRAVITY, 1996, 13 (07) : 1727 - 1737
  • [25] New variables for (1+1)-dimensional gravity
    Gambini, Rodolfo
    Pullin, Jorge
    Rastgoo, Saeed
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (02)
  • [26] Entropy in (1+1)-dimensional black hole
    Shen, YG
    Chen, DM
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1998, 37 (12) : 3041 - 3049
  • [27] Integrable 1+1 dimensional gravity models
    Filippov, AT
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (01): : 13 - 22
  • [28] Stealths on (1+1)-dimensional dilatonic gravity
    Alvarez, Abigail
    Campuzano, Cuauhtemoc
    Cruz, Miguel
    Rojas, Efrain
    Saavedra, Joel
    GENERAL RELATIVITY AND GRAVITATION, 2016, 48 (12)
  • [29] Anomalies of (1+1)-dimensional categorical symmetries
    Zhang, Carolyn
    Cordova, Clay
    PHYSICAL REVIEW B, 2024, 110 (03)
  • [30] SPECTRAL FLOW IN A (1+1)-DIMENSIONAL MODEL
    KEIL, W
    KOBES, R
    PHYSICAL REVIEW D, 1985, 32 (08): : 2231 - 2234