Confinement effects and tunnelling through quantum dots

被引:11
|
作者
Lannoo, M
Delerue, C
Allan, G
Niquet, YM
机构
[1] Inst Super Elect Mediterranee, Lab Mat & Microelect Provence, F-88000 Toulon, France
[2] Inst Elect & Microelect Nord, Dept ISEN, F-59046 Lille, France
关键词
quantum dots; nanocrystals; confinement;
D O I
10.1098/rsta.2002.1127
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Several recent theoretical advances concerning semiconductor quantum dots are reviewed. First of all, the effect of the quantum confinement on the energy gap is revisited on the basis of GW and Bethe-Salpeter calculations, showing that the excitonic gap is practically equal to the ordinary eigenvalue gap of single-particle approximations. The second part demonstrates that it is now possible to calculate the conductance peaks for the tunnelling current through a nanostructure. Finally, we discuss in some detail the concept of a macroscopic dielectric constant for nanostructures, showing that, except for a thin surface layer, the local dielectric constant still keeps its bulk value down to pretty small nanostructures.
引用
收藏
页码:259 / 272
页数:14
相关论文
共 50 条
  • [31] Dynamical nuclear polarization and confinement effects in ZnO quantum dots
    Baranov, Pavel G.
    Orlinskii, Sergei B.
    Hofmann, Detlev M.
    Donega, Celso de Mello
    Meijerink, Andries
    Schmidt, Jan
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2010, 247 (06): : 1476 - 1479
  • [32] Investigation of the quantum confinement effects in CdTe dots by electrical measurements
    Placzek-Popko, E.
    Nowak, A.
    Karczewski, G.
    Wojtowicz, T.
    Wiater, M.
    Guziewicz, M.
    Gumienny, Z.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 813 - +
  • [33] Matrix and quantum confinement effects on optical and thermal properties of Ge quantum dots
    Chang, J. E.
    Liao, P. H.
    Chien, C. Y.
    Hsu, J. C.
    Hung, M. T.
    Chang, H. T.
    Lee, S. W.
    Chen, W. Y.
    Hsu, T. M.
    George, Tom
    Li, P. W.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2012, 45 (10)
  • [34] Charge transport through a set of quantum dots with oscillating electron tunnelling rates between the quantum dots and the drain electron reservoir
    Taranko, R.
    Wiertel, M.
    Parafiniuk, P.
    Taranko, E.
    VACUUM, 2009, 83 : S169 - S172
  • [35] Quantum confinement in semiconductor Ge quantum dots
    Ren, SY
    SOLID STATE COMMUNICATIONS, 1997, 102 (06) : 479 - 484
  • [36] Quantum confinement induced strain in quantum dots
    Zhang, Xinyuan
    Sharma, Pradeep
    Johnson, H. T.
    PHYSICAL REVIEW B, 2007, 75 (15)
  • [37] Effect of confinement on water rotation via quantum tunnelling
    Zhang, Depeng
    Zhang, Zhiyuan
    Jiang, Wanrun
    Gao, Yi
    Wang, Zhigang
    NANOSCALE, 2018, 10 (39) : 18622 - 18626
  • [38] The Use of Quantum Potentials for Confinement and Tunnelling in Semiconductor Devices
    Asenov A.
    Watling J.R.
    Brown A.R.
    Ferry D.K.
    Journal of Computational Electronics, 2002, 1 (04) : 503 - 513
  • [39] Exciton tunnelling in ZnCdSe quantum well/CdSe quantum dots
    Jin, H
    Zhang, LG
    Zheng, ZH
    Kong, XG
    Shen, DZ
    SOLID STATE COMMUNICATIONS, 2004, 130 (10) : 653 - 655
  • [40] Exciton tunnelling in ZnCdSe quantum well/CdSe quantum dots
    Jin, H
    Zhang, LG
    Zheng, ZH
    Kong, XG
    An, LN
    Shen, DZ
    ACTA PHYSICA SINICA, 2004, 53 (09) : 3211 - 3214