Non-concave fundamental diagrams and phase transitions in a stochastic traffic cellular automaton

被引:12
|
作者
Maerivoet, S [1 ]
De Moor, B [1 ]
机构
[1] Katholieke Univ Leuven, Dept Elect Engn, ESAT SCD, SISTA, B-3001 Heverlee, Belgium
来源
EUROPEAN PHYSICAL JOURNAL B | 2004年 / 42卷 / 01期
关键词
D O I
10.1140/epjb/e2004-00365-8
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Within the class of stochastic cellular automata models of traffic flows, we look at the velocity dependent randomization variant (VDR-TCA) whose parameters take on a specific set of extreme values. These initial conditions lead us to the discovery of the emergence of four distinct phases. Studying the transitions between these phases, allows us to establish a rigorous classification based on their tempo-spatial behavioral characteristics. As a result from the system's complex dynamics, its flow-density relation exhibits a non-concave region in which forward propagating density waves are encountered. All four phases furthermore share the common property that moving vehicles can never increase their speed once the system has settled into an equilibrium.
引用
收藏
页码:131 / 140
页数:10
相关论文
共 50 条
  • [21] Phase diagrams of the FCC Blume-Emery-Griffiths model on a cellular automaton
    Oezkan, A.
    Kutlu, B.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2007, 18 (09): : 1417 - 1427
  • [22] Multiclass first-order traffic model using stochastic fundamental diagrams
    Ngoduy, D.
    TRANSPORTMETRICA, 2011, 7 (02): : 111 - 125
  • [23] Self-organized phase transitions in cellular automaton models for pedestrians
    Fukui, M
    Ishibashi, Y
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1999, 68 (08) : 2861 - 2863
  • [24] Nature of phase transitions in a probabilistic cellular automaton with two absorbing states
    Bagnoli, F
    Boccara, N
    Rechtman, R
    PHYSICAL REVIEW E, 2001, 63 (04): : 461161 - 461169
  • [25] Localized defects in a cellular automaton model for traffic flow with phase separation
    Pottmeier, A
    Barlovic, R
    Knospe, W
    Schadschneider, A
    Schreckenberg, M
    TRAFFIC AND GRANULAR FLOW'01, 2003, : 109 - 114
  • [26] Localized defects in a cellular automaton model for traffic flow with phase separation
    Pottmeier, A
    Barlovic, R
    Knospe, W
    Schadschneider, A
    Schreckenberg, M
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 308 (1-4) : 471 - 482
  • [27] Phase diagram of a stochastic cellular automaton with long-range interactions
    Cannas, SA
    PHYSICA A, 1998, 258 (1-2): : 32 - 44
  • [28] Phase diagram of a stochastic cellular automaton with long-range interactions
    Universidad Nacional de Cordoba, Cordoba, Argentina
    Phys A, 1-2 (32-44):
  • [29] Phase transitions and optimal transport in stochastic roundabout traffic
    Foulaadvand, M. Ebrahim
    Maass, Philipp
    PHYSICAL REVIEW E, 2016, 94 (01)
  • [30] Opinion formation and phase transitions in a probabilistic cellular automaton with two absorbing states
    Bagnoli, F
    Franci, F
    Rechtman, R
    CELLULAR AUTOMATA, PROCEEDINGS, 2002, 2493 : 249 - 258