Spaceborne GNSS-R Wind Speed Retrieval Using Machine Learning Methods

被引:13
|
作者
Wang, Changyang [1 ,2 ]
Yu, Kegen [1 ,2 ]
Qu, Fangyu [3 ]
Bu, Jinwei [1 ,2 ]
Han, Shuai [1 ,2 ]
Zhang, Kefei [1 ,2 ]
机构
[1] China Univ Min & Technol, MNR Key Lab Land Environm & Disaster Monitoring, Xuzhou 221116, Jiangsu, Peoples R China
[2] China Univ Min & Technol, Sch Environm Sci & Spatial Informat, Xuzhou 221116, Jiangsu, Peoples R China
[3] Nankai Univ, Coll Comp Sci, Tianjin 300073, Peoples R China
基金
中国国家自然科学基金;
关键词
wind speed; Cyclone Global Navigation Satellite System (CYGNSS); regression model; machine learning; ARTIFICIAL NEURAL-NETWORKS; SUPPORT VECTOR MACHINES; OCEAN; MODEL; SCATTERING; SURFACE;
D O I
10.3390/rs14143507
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This paper focuses on sea surface wind speed estimation using L1B level v3.1 data of reflected GNSS signals from the Cyclone GNSS (CYGNSS) mission and European Centre for Medium-range Weather Forecast Reanalysis (ECMWF) wind speed data. Seven machine learning methods are applied for wind speed retrieval, i.e., Regression trees (Binary Tree (BT), Ensembles of Trees (ET), XGBoost (XGB), LightGBM (LGBM)), ANN (Artificial neural network), Stepwise Linear Regression (SLR), and Gaussian Support Vector Machine (GSVM), and a comparison of their performance is made. The wind speed is divided into two different ranges to study the suitability of the different algorithms. A total of 10 observation variables are considered as input parameters to study the importance of individual variables or combinations thereof. The results show that the LGBM model performs the best with an RMSE of 1.419 and a correlation coefficient of 0.849 in the low wind speed interval (0-15 m/s), while the ET model performs the best with an RMSE of 1.100 and a correlation coefficient of 0.767 in the high wind speed interval (15-30 m/s). The effects of the variables used in wind speed retrieval models are investigated using the XGBoost importance metric, showing that a number of variables play a very significant role in wind speed retrieval. It is expected that these results will provide a useful reference for the development of advanced wind speed retrieval algorithms in the future.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Hybrid CNN-LSTM Deep Learning for Track-Wise GNSS-R Ocean Wind Speed Retrieval
    Arabi, Sima
    Asgarimehr, Milad
    Kada, Martin
    Wickert, Jens
    REMOTE SENSING, 2023, 15 (17)
  • [32] GNSS-R Wind Speed Retrieval of Sea Surface Based on Particle Swarm Optimization Algorithm
    Guo, Wenfei
    Du, Hao
    Cheong, Joon Wayn
    Southwell, Benjamin J.
    Dempster, Andrew G.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Deep residual fully connected network for GNSS-R wind speed retrieval and its interpretation
    Du, Hao
    Li, Weiqiang
    Cardellach, Estel
    Ribo, Serni
    Rius, Antonio
    Nan, Yang
    REMOTE SENSING OF ENVIRONMENT, 2024, 313
  • [34] Information Fusion for Spaceborne GNSS-R Sea Surface Height Retrieval Using Modified Residual Multimodal Deep Learning Method
    Wang, Qiang
    Zheng, Wei
    Wu, Fan
    Zhu, Huizhong
    Xu, Aigong
    Shen, Yifan
    Zhao, Yelong
    REMOTE SENSING, 2023, 15 (06)
  • [35] Wind Speed Maping from the ISS Using GNSS-R? A Simulation Study
    Camps, A.
    Park, H.
    Alonso-Arroyo, A.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 382 - 385
  • [36] Spaceborne Demonstration of GNSS-R Scattering Cross Section Sensitivity to Wind Direction
    Pascual, Daniel
    Clarizia, Maria Paola
    Ruf, Christopher S.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [37] RFI Mapped by Spaceborne GNSS-R Data
    Chew, Clara
    Roberts, T. Maximillian
    Lowe, Steve
    NAVIGATION-JOURNAL OF THE INSTITUTE OF NAVIGATION, 2023, 70 (04):
  • [38] Retracking considerations in spaceborne GNSS-R altimetry
    Hyuk Park
    Adriano Camps
    Enric Valencia
    Nereida Rodriguez-Alvarez
    Xavier Bosch-Lluis
    Isaac Ramos-Perez
    Hugo Carreno-Luengo
    GPS Solutions, 2012, 16 : 507 - 518
  • [39] Integrating spaceborne GNSS-R and SMOS for sea surface salinity retrieval using artificial neural network
    Li, Zheng
    Guo, Fei
    Zhang, Xiaohong
    Zhang, Zhiyu
    Zhu, Yifan
    Yang, Wentao
    Wu, Ziheng
    Yue, Liming
    GPS SOLUTIONS, 2024, 28 (04)
  • [40] Retracking considerations in spaceborne GNSS-R altimetry
    Park, Hyuk
    Camps, Adriano
    Valencia, Enric
    Rodriguez-Alvarez, Nereida
    Bosch-Lluis, Xavier
    Ramos-Perez, Isaac
    Carreno-Luengo, Hugo
    GPS SOLUTIONS, 2012, 16 (04) : 507 - 518