Geometric approach to response theory in non-Hamiltonian systems

被引:15
|
作者
Ezra, GS [1 ]
机构
[1] Cornell Univ, Baker Lab, Dept Chem & Biol Chem, Ithaca, NY 14853 USA
关键词
non-Hamiltonian dynamics; response theory; applied differential forms;
D O I
10.1023/A:1022901505641
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The theory of differential forms and time-dependent vector fields on manifolds is applied to formulate response theory for non-Hamiltonian systems. This approach is manifestly coordinate-free, and provides a transparent derivation of the response of a thermostatted system to a time-dependent perturbation.
引用
收藏
页码:339 / 360
页数:22
相关论文
共 50 条
  • [1] Geometric Approach to Response Theory in Non-Hamiltonian Systems
    Gregory S. Ezra
    Journal of Mathematical Chemistry, 2002, 32 : 339 - 360
  • [2] THE STOCHASTIC APPROACH FOR NON-HAMILTONIAN SYSTEMS
    TZANI, R
    THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 100 (01) : 916 - 920
  • [3] HAMILTON-JACOBI THEORY FOR HAMILTONIAN AND NON-HAMILTONIAN SYSTEMS
    Rashkovskiy, Sergey
    JOURNAL OF GEOMETRIC MECHANICS, 2020, 12 (04): : 563 - 583
  • [4] Quantization of Hamiltonian and non-Hamiltonian systems
    Rashkovskiy, Sergey A.
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2023, 15 (02): : 267 - 288
  • [5] Nontwist non-Hamiltonian systems
    Altmann, E. G.
    Cristadoro, G.
    Pazo, D.
    PHYSICAL REVIEW E, 2006, 73 (05):
  • [6] NON-HAMILTONIAN SCHRODINGER SYSTEMS
    Lucente, Sandra
    Montefusco, Eugenio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2013, 6 (03): : 761 - 770
  • [7] Non-Hamiltonian molecular dynamics: Generalizing Hamiltonian phase space principles to non-Hamiltonian systems
    Tuckerman, ME
    Liu, Y
    Ciccotti, G
    Martyna, GJ
    JOURNAL OF CHEMICAL PHYSICS, 2001, 115 (04): : 1678 - 1702
  • [8] RENORMALIZED OSCILLATION THEORY FOR REGULAR LINEAR NON-HAMILTONIAN SYSTEMS
    Howard, Peter
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (12) : 4311 - 4345
  • [9] Quantization of non-Hamiltonian and dissipative systems
    Tarasov, VE
    PHYSICS LETTERS A, 2001, 288 (3-4) : 173 - 182
  • [10] Quantization of non-Hamiltonian physical systems
    Bolivar, AO
    PHYSICAL REVIEW A, 1998, 58 (06): : 4330 - 4335