Precipitation Nowcasting from Geostationary Satellite: Neural Approaches Trained By Polar Orbiting and Ground-Based Data

被引:0
|
作者
Rivolta, Giancarlo [1 ,2 ]
de Rosa, Michele [1 ]
Marzano, Frank Silvio [1 ,2 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Ingn Elettron, I-00184 Rome, Italy
[2] Univ Aquila, CETEMPS, I-67100 Laquila, Italy
来源
RIVISTA ITALIANA DI TELERILEVAMENTO | 2010年 / 42卷 / 01期
关键词
Nowcasting; Neural Networks; Precipitation; Geostationary satellite; Meteorological radar; RAINFALL ESTIMATION; PASSIVE MICROWAVE; NETWORKS; RETRIEVAL; FRAMEWORK; ENSEMBLE; RADAR;
D O I
暂无
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
This work explores possible improvements of the Neural Combined Algorithm for Storm Tracking (NeuCAST) proposed in Marzano et al. [2007]. In its single channel version, developed for the Visible-Infrared Imager (VIRI) onboard Meteosat-7. this technique has been successfully applied to the rainfall field nowcast from thermal infrared (TIR) and microwave (MW) passive-sensor imagery aboard, respectively, Geostationary-Earth-Orbit and Low-Earth-Orbit satellites. The multi-channel NeuCAST methodology is here introduced,. It extends the single-channel NeuCAST technique to infrared (IR) multi-channel data available from Meteosat Second Generation (MSG) and MW data from ground based meteorological Radar.
引用
收藏
页码:91 / 115
页数:25
相关论文
共 50 条
  • [31] Evaluation of GPM IMERG satellite precipitation product by using of ground-based data over the Yangtze River Basin
    Liu, Jingyu
    Du, Juan
    Yang, Yumeng
    Zhu, Tao
    [J]. DEEP ROCK MECHANICS: FROM RESEARCH TO ENGINEERING, 2019, : 191 - 198
  • [32] Assessing reliability of precipitation data over the Mekong River Basin: A comparison of ground-based, satellite, and reanalysis datasets
    Chen, Aifang
    Chen, Deliang
    Azorin-Molina, Cesar
    [J]. INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2018, 38 (11) : 4314 - 4334
  • [33] Carbon Monoxide Variations in the Antarctic Atmosphere from Ground-Based and Satellite Measurement Data
    V. P. Ustinov
    E. L. Baranova
    K. N. Visheratin
    M. I. Grachev
    A. V. Kal’sin
    [J]. Izvestiya, Atmospheric and Oceanic Physics, 2019, 55 : 1210 - 1217
  • [34] RETRACTED: Effects of the Forecasting Methods, Precipitation Character, and Satellite Resolution on the Predictability of Short-Term Quantitative Precipitation Nowcasting (QPN) from a Geostationary Satellite (Retracted Article)
    Liu, Yu
    Xi, Du-Gang
    Li, Zhao-Liang
    Ji, Wei
    [J]. PLOS ONE, 2015, 10 (10):
  • [35] Convcast: An embedded convolutional LSTM based architecture for precipitation nowcasting using satellite data
    Kumar, Ashutosh
    Islam, Tanvir
    Sekimoto, Yoshihide
    Mattmann, Chris
    Wilson, Brian
    [J]. PLOS ONE, 2020, 15 (03):
  • [36] A COMPARISON OF TOTAL OZONE DATA FROM SATELLITE AND GROUND-BASED OBSERVATIONS AT NORTHERN LATITUDES
    HEESE, B
    BARTHEL, K
    HOV, O
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1992, 97 (D4) : 3825 - 3830
  • [37] PRECIPITATION VARIABILITY ACROSS SATELLITE FIELD-OF-VIEWS DERIVED FROM GROUND-BASED RADAR OBSERVATIONS
    Williams, Christopher R.
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 4092 - 4094
  • [38] Ozone profiles over the South Pole from ground-based retrievals and satellite data
    Nemuc, A.
    de Zafra, R. L.
    [J]. JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2007, 9 (11): : 3533 - 3540
  • [39] Carbon Monoxide Variations in the Antarctic Atmosphere from Ground-Based and Satellite Measurement Data
    Ustinov, V. P.
    Baranova, E. L.
    Visheratin, K. N.
    Grachev, M. I.
    Kal'sin, A. V.
    [J]. IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2019, 55 (09) : 1210 - 1217
  • [40] Retrieving daily evapotranspiration from the combination of geostationary and polar-orbit satellite data
    Barrios, Jose Miguel
    Ghilain, Nicolas
    Arboleda, Alirio
    Gellens-Meulenberghs, Francoise
    [J]. 2015 8TH INTERNATIONAL WORKSHOP ON THE ANALYSIS OF MULTITEMPORAL REMOTE SENSING IMAGES (MULTI-TEMP), 2015,