VizRank: finding informative data projections in functional genomics by machine learning

被引:23
|
作者
Leban, G
Bratko, I
Petrovic, U
Curk, T
Zupan, B [1 ]
机构
[1] Univ Ljubljana, Fac Comp & Informat Sci, Ljubljana, Slovenia
[2] Jozef Stefan Inst, Ljubljana, Slovenia
[3] Baylor Coll Med, Dept Mol & Human Genet, Houston, TX 77030 USA
关键词
D O I
10.1093/bioinformatics/bti016
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
VizRank is a tool that finds interesting two-dimensional projections of class-labeled data. When applied to multi-dimensional functional genomics datasets, VizRank can systematically find relevant biological patterns.
引用
收藏
页码:413 / 414
页数:2
相关论文
共 50 条
  • [1] VizRank: Data Visualization Guided by Machine Learning
    Gregor Leban
    Blaž Zupan
    Gaj Vidmar
    Ivan Bratko
    [J]. Data Mining and Knowledge Discovery, 2006, 13 : 119 - 136
  • [2] VizRank: Data visualization guided by machine learning
    Leban, Gregor
    Zupan, Blaz
    Vidmar, Gaj
    Bratko, Ivan
    [J]. DATA MINING AND KNOWLEDGE DISCOVERY, 2006, 13 (02) : 119 - 136
  • [3] Machine learning in the Genomics era - Editorial: Methods in functional genomics
    Sebastiani, P
    Kohane, IS
    Ramoni, MF
    [J]. MACHINE LEARNING, 2003, 52 (1-2) : 5 - 9
  • [4] Editorial: Big Data and Machine Learning in Cancer Genomics
    Chen, Lin
    Li, Huimin
    Xie, Longxiang
    Zuo, Zhanjie
    Tian, Liqing
    Liu, Changning
    Guo, Xiangqian
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [5] Machine learning applications for therapeutic tasks with genomics data
    Huang, Kexin
    Xiao, Cao
    Glass, Lucas M.
    Critchlow, Cathy W.
    Gibson, Greg
    Sun, Jimeng
    [J]. PATTERNS, 2021, 2 (10):
  • [6] GeneWeaver: finding consilience in heterogeneous cross-species functional genomics data
    Jason A. Bubier
    Charles A. Phillips
    Michael A. Langston
    Erich J. Baker
    Elissa J. Chesler
    [J]. Mammalian Genome, 2015, 26 : 556 - 566
  • [7] GeneWeaver: finding consilience in heterogeneous cross-species functional genomics data
    Bubier, Jason A.
    Phillips, Charles A.
    Langston, Michael A.
    Baker, Erich J.
    Chesler, Elissa J.
    [J]. MAMMALIAN GENOME, 2015, 26 (9-10) : 556 - 566
  • [8] Functional genomics: Learning to think about gene expression data
    Brent, R
    [J]. CURRENT BIOLOGY, 1999, 9 (09) : R338 - R341
  • [9] Machine learning for energy projections
    McCollum, David L.
    [J]. NATURE ENERGY, 2021, 6 (02) : 121 - 122
  • [10] Machine learning for energy projections
    David L. McCollum
    [J]. Nature Energy, 2021, 6 : 121 - 122