Data mining in a multidimensional environment

被引:0
|
作者
Günzel, H [1 ]
Albrecht, J [1 ]
Lehner, W [1 ]
机构
[1] Univ Erlangen Nurnberg, Dept Database Syst, D-91058 Erlangen, Germany
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Data Mining and Data Warehousing are two hot topics in the database research area. Until recently, conventional data mining algorithms were primarily developed for a relational environment. But a data warehouse database is based on a multidimensional model. In our paper we apply this basis for a seamless integration of data mining in the multidimensional model for the example of discovering association rules. Furthermore, we propose this method as a user-guided technique because of the clear structure both of model and data. We present both the theoretical basis and efficient algorithms for data mining in the multidimensional data model. Our approach uses directly the requirements of dimensions, classifications and sparsity of the cube. Additionally we give heuristics for optimizing the search for rules.
引用
收藏
页码:191 / 204
页数:14
相关论文
共 50 条
  • [1] Multidimensional Mining of Massive Text Data
    Zhang, Chao
    Han, Jiawei
    [J]. Synthesis Lectures on Data Mining and Knowledge Discovery, 2019, 11 (02): : 1 - 198
  • [2] Multidimensional Data Mining Based on Tensor
    Yokobayashi, Ryohei
    Miura, Takao
    [J]. 2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1144 - 1151
  • [3] Multidimensional Data Mining For Anomaly Extraction
    Patil, Pratima R.
    Bhamare, Mamta
    [J]. 2013 THIRD INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING AND COMMUNICATIONS (ICACC 2013), 2013, : 5 - 8
  • [4] IntOGen: integration and data mining of multidimensional oncogenomic data
    Gundem, Gunes
    Perez-Llamas, Christian
    Jene-Sanz, Alba
    Kedzierska, Anna
    Islam, Abul
    Deu-Pons, Jordi
    Furney, Simon J.
    Lopez-Bigas, Nuria
    [J]. NATURE METHODS, 2010, 7 (02) : 92 - 93
  • [5] IntOGen: integration and data mining of multidimensional oncogenomic data
    Gunes Gundem
    Christian Perez-Llamas
    Alba Jene-Sanz
    Anna Kedzierska
    Abul Islam
    Jordi Deu-Pons
    Simon J Furney
    Nuria Lopez-Bigas
    [J]. Nature Methods, 2010, 7 : 92 - 93
  • [6] Multidimensional Data Mining Based on Tensor Model
    Yokobayashi, Ryohei
    Miura, Takao
    [J]. 2018 IEEE FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2018, : 142 - 145
  • [7] Mining multidimensional associations in customer telecom data
    Phuong, LB
    Kiem, H
    [J]. CCCT 2003, VOL 3, PROCEEDINGS, 2003, : 33 - 38
  • [8] Cube lattices: a framework for multidimensional data mining
    Casali, A
    Cicchetti, R
    Lakhal, L
    [J]. PROCEEDINGS OF THE THIRD SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2003, : 304 - 308
  • [9] A Relational Data Warehouse for Multidimensional Process Mining
    Vogelgesang, Thomas
    Appelrath, H. -Juergen
    [J]. DATA-DRIVEN PROCESS DISCOVERY AND ANALYSIS, SIMPDA 2015, 2017, 244 : 155 - 184
  • [10] Mining multidimensional data using clustering techniques
    Pagani, Marco
    Bordogna, Gloria
    Valle, Massimiliano
    [J]. DEXA 2007: 18TH INTERNATIONAL CONFERENCE ON DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2007, : 382 - +