Multidimensional Data Mining Based on Tensor Model

被引:1
|
作者
Yokobayashi, Ryohei [1 ]
Miura, Takao [1 ]
机构
[1] Hosei Univ, Dept Adv Sci, Kajinocho 3-7-2, Koganei, Tokyo 1868584, Japan
关键词
Tensor Data Model; Multidimensional Association Rules; Data Mining;
D O I
10.1109/AIKE.2018.00031
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we propose a framework suitable for multidimensional data mining based on tensor. A Tensor Data Model (TDM) provides us with high order data structure and naive description for information retrieval. Among others, we discuss multidimensional rule mining here. Generally, association rule mining (or extraction of association rules) concerns about co-related transaction records of single predicate, and hard to examine the ones over multiple predicates since it takes heavy time- and space-complexities. Here we show TDM allows us to model several operations specific to multidimensional data mining yet to reduce amount of description.
引用
收藏
页码:142 / 145
页数:4
相关论文
共 50 条
  • [1] Multidimensional Data Mining Based on Tensor
    Yokobayashi, Ryohei
    Miura, Takao
    [J]. 2018 18TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW), 2018, : 1144 - 1151
  • [2] Constraint-based, multidimensional data mining
    Han, JW
    Lakshmanan, LVS
    Ng, RT
    [J]. COMPUTER, 1999, 32 (08) : 46 - +
  • [3] An efficient multidimensional data model for Web usage mining
    Wu, EH
    Ng, MK
    Huang, JZ
    [J]. ADVANCED WEB TECHNOLOGIES AND APPLICATIONS, 2004, 3007 : 373 - 383
  • [4] A New Data Mining Method based on Multidimensional-Data Flow
    Chen Li-li
    Fu Xiao-juan
    Gang Jia-lin
    Lin Li
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN ENGINEERING 2011, 2011, 24 : 365 - 369
  • [5] Change Detection in Multidimensional Data Streams with Efficient Tensor Subspace Model
    Cyganek, Boguslaw
    [J]. HYBRID ARTIFICIAL INTELLIGENT SYSTEMS (HAIS 2018), 2018, 10870 : 694 - 705
  • [6] Data mining in a multidimensional environment
    Günzel, H
    Albrecht, J
    Lehner, W
    [J]. ADVANCES IN DATABASES AND INFORMATION SYSTEMS, 1999, 1691 : 191 - 204
  • [7] TENSOR ENSEMBLE LEARNING FOR MULTIDIMENSIONAL DATA
    Kisil, Ilia
    Moniri, Ahmad
    Mandic, Danilo P.
    [J]. 2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1358 - 1362
  • [8] Data model to enable multidimensional process mining for data farming based value stream planning in production networks
    Kroeger, Sebastian
    Rafles, Alrisyadani
    Jordan, Patrick
    Soellner, Christoph
    Zaeh, Michael F.
    [J]. PRODUCTION ENGINEERING-RESEARCH AND DEVELOPMENT, 2024,
  • [9] Tensor denoising of multidimensional MRI data
    Olesen, Jonas L.
    Ianus, Andrada
    Ostergaard, Leif
    Shemesh, Noam
    Jespersen, Sune N.
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2023, 89 (03) : 1160 - 1172
  • [10] The Efficiency Research in the Process of Handling the Multidimensional Data Mining With the Method of Model Establishing Based on AHP
    Li, Yue
    Liu, Ran
    [J]. 2013 THE FOURTH INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND EDUCATION APPLICATION (ICEA 2013), PT 2, 2013, 31 : 74 - 78