Influence of symbiotic and non-symbiotic bacteria on pheromone production in Steinernema nematodes (Nematoda, Steinernematidae)

被引:6
|
作者
Roder, Alexandra C. [1 ]
Wang, Yuting [2 ]
Butcher, Rebecca A. [2 ]
Stock, S. Patricia [1 ,3 ]
机构
[1] Univ Arizona, Sch Anim & Comparat Biomed Sci, Tucson, AZ 85721 USA
[2] Univ Florida, Dept Chem, Gainesville, FL 32611 USA
[3] Univ Arizona, Dept Entomol, Forbes Bldg Rm 410,1140 E South Campus Dr, Tucson, AZ 85721 USA
来源
JOURNAL OF EXPERIMENTAL BIOLOGY | 2019年 / 222卷 / 18期
关键词
Symbiont; Host; Ascarosides; Xenorhabdus; Signaling molecules; CAENORHABDITIS-ELEGANS; ENTOMOPATHOGENIC NEMATODES; XENORHABDUS; ENTEROBACTERIACEAE;
D O I
10.1242/jeb.212068
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we assessed the effect of symbiotic (cognate and non-cognate) and non-symbiotic bacteria on ascaroside production of first-generation adults in two Steinernema spp.: S. carpocapsae All strain and S. feltiae SN strain. Each nematode species was reared under three bacterial scenarios: (1) cognate symbiotic, (2) non-cognate symbiotic strain and (3) non-cognate symbiotic species. Our results showed S. carpocapsae produced four quantifiable ascaroside molecules: asc-C5, asc-C6, asc-C7 and asc-C11, whereas in S. feltiae only three molecules were detected: asc-C5, asc-C7 and asc-C11. Bacterial conditions did not significantly affect the quantity of the secreted ascarosides in first-generation adults of S. carpocapsae. However, in S. feltiae, Xenorhabdus nematophila All strain influenced the production of two ascaroside molecules: asc-C5 and asc-C11.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] NON-SYMBIOTIC NITROGEN-FIXING BACTERIA IN THE RHIZOSPHERE OF WHEAT, MAIZE AND SORGHUM
    KAVIMANDAN, SK
    LAKSHMIKUMARI, M
    RAO, NSS
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES SECTION B, 1978, 87 (11): : 299 - 302
  • [32] A MODEL OF SELECTION FOR FACULTATIVE NON-SYMBIOTIC MUTUALISM
    KEELER, KH
    [J]. AMERICAN NATURALIST, 1981, 118 (04): : 488 - 498
  • [33] THE INFLUENCE OF MICROARTHROPODS ON SYMBIOTIC AND NON-SYMBIOTIC MUTUALISM IN DETRITAL-BASED BELOW-GROUND FOOD WEBS
    MOORE, JC
    [J]. AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 1988, 24 (1-3) : 147 - 159
  • [34] EVOLUTIONARY ORIGIN OF MITOCHONDRION - NON-SYMBIOTIC MODEL
    MAHLER, HR
    RAFF, RA
    [J]. INTERNATIONAL REVIEW OF CYTOLOGY-A SURVEY OF CELL BIOLOGY, 1975, 43 : 1 - 124
  • [35] Non-symbiotic nitrogen fixation in forest ecosystems
    Son, Y
    [J]. ECOLOGICAL RESEARCH, 2001, 16 (02) : 183 - 196
  • [36] 16S rDNA-Based Phylogeny of Non-Symbiotic Bacteria of Entomopathogenic Nematodes from Infected Insect Cadavers
    M. Razia
    R. Karthik Raja
    K. Padmanaban
    P. Chellapandi
    S. Sivaramakrishnan
    [J]. Genomics,Proteomics & Bioinformatics, 2011, (03) : 104 - 112
  • [37] A novel non-symbiotic hemoglobin from oak
    Parent, Claire
    Berger, Audrey
    Capelli, Nicolas
    Crevecoeur, Michele
    Dat, James F.
    [J]. PLANT SIGNALING & BEHAVIOR, 2008, 3 (10) : 819 - 820
  • [38] NON-SYMBIOTIC NITROGEN-FIXATION BY RHIZOBIA
    RAO, VR
    KEISTER, DL
    AGARWAL, AK
    [J]. JOURNAL OF SCIENTIFIC & INDUSTRIAL RESEARCH, 1982, 41 (08): : 507 - 513
  • [39] A single hemoglobin gene in Myrica gale retains both symbiotic and non-symbiotic specificity
    Heckmann, Anne B.
    Hebelstrup, Kim H.
    Larsen, Knud
    Micaelo, Nuno M.
    Jensen, Erik O.
    [J]. PLANT MOLECULAR BIOLOGY, 2006, 61 (4-5) : 769 - 779
  • [40] Characterization of Xenorhabdus isolates from La Rioja ( Northern Spain) and virulence with and without their symbiotic entomopathogenic nematodes (Nematoda: Steinernematidae)
    Campos-Herrera, R.
    Tailliez, P.
    Pages, S.
    Ginibre, N.
    Gutierrez, C.
    Boemare, N. E.
    [J]. JOURNAL OF INVERTEBRATE PATHOLOGY, 2009, 102 (02) : 173 - 181