DeepLabCut: markerless pose estimation of user-defined body parts with deep learning

被引:1975
|
作者
Mathis, Alexander [1 ,2 ,3 ,4 ]
Mamidanna, Pranav [1 ,2 ]
Cury, Kevin M. [5 ,6 ]
Abe, Taiga [5 ,6 ]
Murthy, Venkatesh N. [3 ,4 ]
Mathis, Mackenzie Weygandt [1 ,2 ,7 ]
Bethge, Matthias [1 ,2 ,8 ,9 ,10 ]
机构
[1] Eberhard Karls Univ Tubingen, Inst Theoret Phys, Tubingen, Germany
[2] Eberhard Karls Univ Tubingen, Werner Reichardt Ctr Integrat Neurosci, Tubingen, Germany
[3] Harvard Univ, Dept Mol & Cellular Biol, Cambridge, MA 02138 USA
[4] Harvard Univ, Ctr Brain Sci, Cambridge, MA 02138 USA
[5] Columbia Univ, Dept Neurosci, New York, NY USA
[6] Columbia Univ, Mortimer B Zuckerman Mind Brain Behav Inst, New York, NY USA
[7] Harvard Univ, Rowland Inst Harvard, Cambridge, MA 02138 USA
[8] Max Planck Inst Biol Cybernet, Tubingen, Germany
[9] Bernstein Ctr Computat Neurosci, Tubingen, Germany
[10] Baylor Coll Med, Ctr Neurosci & Artificial Intelligence, Houston, TX 77030 USA
关键词
BEHAVIOR; TRACKING;
D O I
10.1038/s41593-018-0209-y
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Quantifying behavior is crucial for many applications in neuroscience. Videography provides easy methods for the observation and recording of animal behavior in diverse settings, yet extracting particular aspects of a behavior for further analysis can be highly time consuming. In motor control studies, humans or other animals are often marked with reflective markers to assist with computer-based tracking, but markers are intrusive, and the number and location of the markers must be determined a priori. Here we present an efficient method for markerless pose estimation based on transfer learning with deep neural networks that achieves excellent results with minimal training data. We demonstrate the versatility of this framework by tracking various body parts in multiple species across a broad collection of behaviors. Remarkably, even when only a small number of frames are labeled (similar to 200), the algorithm achieves excellent tracking performance on test frames that is comparable to human accuracy.
引用
收藏
页码:1281 / +
页数:10
相关论文
共 50 条
  • [21] Pose estimation with deep learning
    Nina Vogt
    [J]. Nature Methods, 2019, 16 : 1205 - 1205
  • [22] Graph Pattern Mining and Learning through User-defined Relations
    Teixeira, Carlos H. C.
    Cotta, Leonardo
    Ribeiro, Bruno
    Meira, Wagner, Jr.
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2018, : 1266 - 1271
  • [23] HPC cluster-based user-defined data integration platform for deep learning in geoscience applications
    Li, Guohua
    Choi, Yeji
    [J]. COMPUTERS & GEOSCIENCES, 2021, 155
  • [24] Learning Markerless Human Pose Estimation from Multiple Viewpoint Video
    Trumble, Matthew
    Gilbert, Andrew
    Hilton, Adrian
    Collomosse, John
    [J]. Computer Vision - ECCV 2016 Workshops, Pt III, 2016, 9915 : 871 - 878
  • [25] Body parts relevance learning via expectation-maximization for human pose estimation
    Yue, Luhui
    Li, Junxia
    Liu, Qingshan
    [J]. MULTIMEDIA SYSTEMS, 2021, 27 (05) : 927 - 939
  • [26] PMotion: an advanced markerless pose estimation approach based on novel deep learning framework used to reveal neurobehavior
    Lv, Xiaodong
    Liu, Haijie
    Chen, Luyao
    Dai, Chuankai
    Wei, Penghu
    Hao, Junwei
    Zhao, Guoguang
    [J]. JOURNAL OF NEURAL ENGINEERING, 2023, 20 (04)
  • [27] Aneurysm Pose Estimation with Deep Learning
    Assis, Youssef
    Liao, Liang
    Pierre, Fabien
    Anxionnat, Rene
    Kerrien, Erwan
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT II, 2023, 14221 : 543 - 553
  • [28] Markerless Human Body Pose Estimation from Consumer Depth Cameras for Simulator
    Lee, Dongjin
    Park, Chankyu
    Chi, Suyoung
    Yoon, Hosub
    Kim, Jaehong
    [J]. 2015 12TH INTERNATIONAL CONFERENCE ON UBIQUITOUS ROBOTS AND AMBIENT INTELLIGENCE (URAI), 2015, : 398 - 403
  • [29] Decomposing user-defined tasks in a reinforcement learning setup using TextWorld
    Petsanis, Thanos
    Keroglou, Christoforos
    Kapoutsis, Athanasios Ch.
    Kosmatopoulos, Elias B.
    Sirakoulis, Georgios Ch.
    [J]. FRONTIERS IN ROBOTICS AND AI, 2023, 10
  • [30] Markerless 3D Pose Estimation System for Mouse Musculoskeletal Model Using DeepLabCut and Multiple RGB-D Cameras
    Tsuruda, Yoshito
    Akita, Shingo
    Yamanaka, Kotomi
    Yamamoto, Masataka
    Sano, Yoshitake
    Furuichi, Teiichi
    Takemura, Hiroshi
    [J]. 2023 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION, SII, 2023,