Automated Nanoparticle Analysis in Surface Plasmon Resonance Microscopy

被引:18
|
作者
Wang, Xu [1 ]
Zeng, Qiang [2 ]
Xie, Feng [2 ]
Wang, Jingan [2 ]
Yang, Yuting [3 ]
Xu, Ying [1 ]
Li, Jinghong [4 ]
Yu, Hui [2 ]
机构
[1] Hangzhou Dianzi Univ, Coll Automat, Hangzhou 310018, Zhejiang, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200030, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Instrument Sci & Engn, Sch Elect Informat & Elect Engn, Shanghai 200030, Peoples R China
[4] Tsinghua Univ, Dept Chem, Key Lab Bioorgan Phosphorus Chem & Chem Biol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
SINGLE; PROTEINS; DNA;
D O I
10.1021/acs.analchem.1c01493
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The unique capability of surface plasmon resonance microscopy (SPRM) in single nanoparticle analysis has found use in various chemical and biological applications. While SPRM offers exceptional sensitivity, the statistical analysis of numerous nanoparticles has been extremely laborious and time-consuming. Herein, we presented an image processing software package for nanoparticle analysis in SPRM, which is empowered by a deep learning algorithm. This package enabled fully automated nanoparticle identification, digital counting, three-dimensional tracking of particle locations, and quantification of dwell time and Brownian motion properties. With a built-in image filtering process to improve the contrast, robust identification and analysis have been achieved from SPRM images of low refractive index nanoparticles. This software tool would largely promote the translation of SPRM technology into the digital sensing platform for high throughput sample screening.
引用
收藏
页码:7399 / 7404
页数:6
相关论文
共 50 条
  • [21] On the Surface Plasmon Resonance Modes of Metal Nanoparticle Chains and Arrays
    Ergun Simsek
    [J]. Plasmonics, 2009, 4 : 223 - 230
  • [22] Surface plasmon resonance in gold nanoparticle infiltrated dielectric opals
    Romanov, SG
    Susha, AS
    Torres, CMS
    Liang, Z
    Caruso, F
    [J]. JOURNAL OF APPLIED PHYSICS, 2005, 97 (08)
  • [23] A surface plasmon resonance biosensor based on gold nanoparticle array
    Du, Yuchan
    Shi, Lina
    Hong, Meihua
    Li, Hailiang
    Li, Dongmei
    Liu, Ming
    [J]. OPTICS COMMUNICATIONS, 2013, 298 : 232 - 236
  • [24] Measuring Melittin Uptake into Hydrogel Nanoparticles with Near-Infrared Single Nanoparticle Surface Plasmon Resonance Microscopy
    Cho, Kyunghee
    Fasoli, Jennifer B.
    Yoshimatsu, Keiichi
    Shea, Kenneth J.
    Corn, Robert M.
    [J]. ANALYTICAL CHEMISTRY, 2015, 87 (09) : 4973 - 4979
  • [25] On the Surface Plasmon Resonance Modes of Metal Nanoparticle Chains and Arrays
    Simsek, Ergun
    [J]. PLASMONICS, 2009, 4 (03) : 223 - 230
  • [26] Measurement of Copper Nanoparticle Concentration Using Surface Plasmon Resonance
    Sadrolhosseini, Amir Reza
    Noor, A. S. M.
    Mahdi, M. A.
    [J]. 2014 IEEE 5TH INTERNATIONAL CONFERENCE ON PHOTONICS (ICP), 2014, : 179 - 181
  • [27] Surface plasmon resonance enhanced photoconductivity in Cu nanoparticle films
    Yang, Ki Youl
    Choi, Kyung Cheol
    Kang, Il-Suk
    Ahn, Chi Won
    [J]. OPTICS EXPRESS, 2010, 18 (16): : 16379 - 16386
  • [28] Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment
    Miller, MM
    Lazarides, AA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (46): : 21556 - 21565
  • [29] Three dimensional nanoparticle trapping enhanced by surface plasmon resonance
    Wu, Jingzhi
    Gan, Xiaosong
    [J]. OPTICS EXPRESS, 2010, 18 (26): : 27619 - 27626
  • [30] Noble metal nanoparticle surface plasmon resonance in absorbing medium
    Aghlara, H.
    Rostami, R.
    Maghoul, Amir
    SalmanOgli, Ahmad
    [J]. OPTIK, 2015, 126 (04): : 417 - 420