Kloosterman paths of prime powers moduli

被引:4
|
作者
Ricotta, Guillaume [1 ]
Royer, Emmanuel [2 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
[2] Lab Math Fondamentales, Campus Univ Cezeaux,3 Pl Vasarely,TSA 60026, F-63178 Aubiere, France
关键词
Kloosterman sums; moments; random Fourier series; probability in Banach spaces; CHARACTER SUMS;
D O I
10.4171/CMH/442
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In [12], the authors proved, using a deep independence result of Kloosterman sheaves, that the polygonal paths joining the partial sums of the normalized classical Kloosterman sums S(a, b(0) ; p)/p(1/2) converge in the sense of finite distributions to a specific random Fourier series, as a varies over (Z / p(Z))(x), b(0) is fixed in (Z / p(Z))(x) and p tends to infinity among the odd prime numbers. This article considers the case of S(a; b(0) ; p(n/2), as a varies over. (Z = p(n)Z)(x) , b(0) is fixed in (Z / p(n)Z)(x), p tends to infinity among the odd prime numbers and n >= 2 is a fixed integer. A convergence in law in the Banach space of complex-valued continuous function on (0, 1) is also established, as (a, b) varies over (Z / p(n)Z)(x) x (Z / p(n)Z)(x), p tends to infinity among the odd prime numbers and n >= 2 is a fixed integer. This is the analogue of the result obtained in [12] in the prime moduli case.
引用
收藏
页码:493 / 532
页数:40
相关论文
共 50 条
  • [1] KLOOSTERMAN PATHS OF PRIME POWERS MODULI, II
    Ricotta, Guillaume
    Royer, Emmanuel
    Shparlinski, Igor
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2020, 148 (01): : 173 - 188
  • [2] Matrix Kloosterman sums modulo prime powers
    M. Erdélyi
    Á. Tóth
    G. Zábrádi
    [J]. Mathematische Zeitschrift, 2024, 306
  • [3] Matrix Kloosterman sums modulo prime powers
    Erdelyi, M.
    Toth, A.
    Zabradi, G.
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2024, 306 (04)
  • [4] Sign changes of Kloosterman sums with almost prime moduli
    Xi, Ping
    [J]. MONATSHEFTE FUR MATHEMATIK, 2015, 177 (01): : 141 - 163
  • [5] Sign changes of Kloosterman sums with almost prime moduli
    Ping Xi
    [J]. Monatshefte für Mathematik, 2015, 177 : 141 - 163
  • [6] DISTRIBUTION OF TWISTED KLOOSTERMAN SUMS MODULO PRIME POWERS
    Kelmer, Dubi
    [J]. INTERNATIONAL JOURNAL OF NUMBER THEORY, 2010, 6 (02) : 271 - 280
  • [7] Sign Changes of Kloosterman Sums with Almost Prime Moduli. II
    Xi, Ping
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2018, 2018 (04) : 1200 - 1227
  • [8] Sign Changes of Kloosterman Sums with Almost Prime Moduli. II: Corrigendum
    Xi, Ping
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2022, 2022 (01) : 556 - 574
  • [9] Explicit values of multi-dimensional Kloosterman sums for prime powers, II
    Gurak, S.
    [J]. MATHEMATICS OF COMPUTATION, 2008, 77 (261) : 475 - 493
  • [10] Kloosterman sums with prime variable
    Baker, Roger C.
    [J]. ACTA ARITHMETICA, 2012, 156 (04) : 351 - 372