Model-Free Non-Stationarity Detection and Adaptation in Reinforcement Learning

被引:7
|
作者
Canonaco, Giuseppe [1 ]
Restelli, Marcello [1 ]
Roveri, Manuel [1 ]
机构
[1] Politecn Milan, Milan, Italy
关键词
D O I
10.3233/FAIA200200
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In most Reinforcement Learning (RL) studies, the considered task is assumed to be stationary, i.e., it does not change its behavior or its characteristics over time, as this allows to generate all the convergence properties of RL techniques. Unfortunately, this assumption does not hold in real-world scenarios where systems and environments typically evolve over time. For instance, in robotic applications, sensor or actuator faults would induce a sudden change in the RL settings, while in financial applications the evolution of the market can cause a more gradual variation over time. In this paper, we present an adaptive RL algorithm able to detect changes in the environment or in the reward function and react to these changes by adapting to the new conditions of the task. At first, we develop a figure of merit onto which a hypothesis test can be applied to detect changes between two different learning iterations. Then, we extended this test to sequentially operate over time by means of the CUmulative SUM (CUSUM) approach. Finally, the proposed changedetection mechanism is combined (following an adaptive-active approach) with a well known RL algorithm to make it able to deal with non-stationary tasks. We tested the proposed algorithm on two well-known continuous-control tasks to check its effectiveness in terms of non-stationarity detection and adaptation over a vanilla RL algorithm.
引用
下载
收藏
页码:1047 / 1054
页数:8
相关论文
共 50 条
  • [41] Linear Quadratic Control Using Model-Free Reinforcement Learning
    Yaghmaie, Farnaz Adib
    Gustafsson, Fredrik
    Ljung, Lennart
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2023, 68 (02) : 737 - 752
  • [42] Model-Free Reinforcement Learning of Impedance Control in Stochastic Environments
    Stulp, Freek
    Buchli, Jonas
    Ellmer, Alice
    Mistry, Michael
    Theodorou, Evangelos A.
    Schaal, Stefan
    IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2012, 4 (04) : 330 - 341
  • [43] On Distributed Model-Free Reinforcement Learning Control With Stability Guarantee
    Mukherjee, Sayak
    Vu, Thanh Long
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (05): : 1615 - 1620
  • [44] Model-Free Recurrent Reinforcement Learning for AUV Horizontal Control
    Huo, Yujia
    Li, Yiping
    Feng, Xisheng
    3RD INTERNATIONAL CONFERENCE ON AUTOMATION, CONTROL AND ROBOTICS ENGINEERING (CACRE 2018), 2018, 428
  • [45] Model-Free Control for Soft Manipulators based on Reinforcement Learning
    You, Xuanke
    Zhang, Yixiao
    Chen, Xiaotong
    Liu, Xinghua
    Wang, Zhanchi
    Jiang, Hao
    Chen, Xiaoping
    2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 2909 - 2915
  • [46] Limit Reachability for Model-Free Reinforcement Learning of ω-Regular Objectives
    Hahn, Ernst Moritz
    Perez, Mateo
    Schewe, Sven
    Somenzi, Fabio
    Trivedi, Ashutosh
    Wojtczak, Dominik
    PROCEEDINGS OF THE 5TH INTERNATIONAL WORKSHOP ON SYMBOLIC-NUMERIC METHODS FOR REASONING ABOUT CPS AND IOT (SNR 2019), 2019, : 16 - 18
  • [47] Model-Free Reinforcement Learning with the Decision-Estimation Coefficient
    Foster, Dylan J.
    Golowich, Noah
    Qian, Jian
    Rakhlin, Alexander
    Sekhari, Ayush
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [48] Safe Reinforcement Learning via a Model-Free Safety Certifier
    Modares, Amir
    Sadati, Nasser
    Esmaeili, Babak
    Yaghmaie, Farnaz Adib
    Modares, Hamidreza
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (03) : 3302 - 3311
  • [49] On Distributed Model-Free Reinforcement Learning Control with Stability Guarantee
    Mukherjee, Sayak
    Thanh Long Vu
    2021 AMERICAN CONTROL CONFERENCE (ACC), 2021, : 2175 - 2180
  • [50] Model-Free Emergency Frequency Control Based on Reinforcement Learning
    Chen, Chunyu
    Cui, Mingjian
    Li, Fangxing
    Yin, Shengfei
    Wang, Xinan
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2021, 17 (04) : 2336 - 2346