Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs

被引:86
|
作者
Suedee, Roongnapa [1 ]
Jantarat, Chutima [1 ]
Lindner, Wolfgang [2 ]
Viernstein, Helmut [3 ]
Songkro, Sarunyoo [1 ]
Srichana, Teerapol [1 ]
机构
[1] Prince Songkla Univ, Mol Recognit Mat Res Unit, Drug Delivery Syst Excellence Ctr, Dept Pharmaceut Chem,Fac Pharmaceut Sci, Hat Yai 90112, Songkla, Thailand
[2] Univ Vienna, Inst Analyt Chem & Food Chem, A-1090 Vienna, Austria
[3] Univ Vienna, Dept Pharmaceut Technol & Biopharmaceut, A-1090 Vienna, Austria
关键词
Molecular imprinting; pH-responsive drug delivery; Controlled release; Chiral nanotechnology; Enantiomer; MOLECULARLY IMPRINTED POLYMER; CONTROLLED-RELEASE; CELLULOSE; MEMBRANE;
D O I
10.1016/j.jconrel.2009.10.011
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study aimed to develop enantioselective-controlled drug delivery systems for selective release of the required (S)-enantiomer in a dose formulation containing a racemic drug in response to pH stimuli. The recognition system was obtained from a nanoparticle-on-microsphere (NOM) molecularly imprinted polymer (MIP) with a multifunctional chiral cinchona anchor synthesised by suspension polymerisation using ethylene glycol dimethacrylate as a cross-linker. (S)-omeprazole was used as an imprinting molecule conferring stereoselectivity upon the polymers. The ability of the prepared recognition polymers to selectively rebind (S)-omeprazole was evident at different pH levels (the highest being at pH 7.4). The partial selective-release phenomenon of the (S)-enantiomer in MIP-containing composite cellulose membranes with increased vehicular racemic omeprazole concentrations was highly pH-dependent. Cinchona-bonded polymers imprinted with (S)-omeprazole could recognise the moldable contact site of (S)-omeprazole independently of its chirality; this is responsible for the delivery of (S)-enantiomer from racemic omeprazole. The controlled-release drug devices were fabricated with synthesised composite latex, and consisted of a pH stimuli-responsive poly (hydroxyethyl methacrylate) (HEMA) and polycaprolactone-triol (PCL-T) blend, and a MIP with preloaded drug, along with pH 7.4 buffer in the device's interior. The results demonstrate that drug delivery systems containing (S)-omeprazole imprinted cinchona-polymer nanoparticte-on-microspheres may maximise efficacy while minimising dose frequency. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:122 / 131
页数:10
相关论文
共 50 条
  • [41] A Novel pH-Responsive Magnetic Nanosystem for Delivery of Anticancer Drugs
    Taghavi, Nazila
    Massoumi, Bakhshali
    Jaymand, Mehdi
    POLYMER SCIENCE SERIES B, 2021, 63 (04) : 408 - 417
  • [42] pH-Responsive wormlike micelles for intracellular delivery of hydrophobic drugs
    Yu, Haijun
    Shi, Xuetao
    Yu, Pengcheng
    Zhou, Jianhua
    Zhang, Zhiwen
    Wu, Hongkai
    Li, Yaping
    JOURNAL OF CONTROLLED RELEASE, 2013, 172 (01) : E33 - E34
  • [43] Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs
    Murthy, N
    Campbell, J
    Fausto, N
    Hoffman, AS
    Stayton, PS
    BIOCONJUGATE CHEMISTRY, 2003, 14 (02) : 412 - 419
  • [44] pH-responsive mesoporous silica drug delivery system for targeted cancer chemotherapy
    Bao, Wen
    Ma, Haibo
    Wang, Nan
    He, Zhanhang
    MATERIALS TECHNOLOGY, 2021, 36 (05) : 308 - 316
  • [45] A pH-responsive AIE nanoprobe as a drug delivery system for bioimaging and cancer therapy
    Wang, Haibo
    Liu, Gongyan
    Dong, Shihua
    Xiong, Junjie
    Dua, Zongliang
    Cheng, Xu
    JOURNAL OF MATERIALS CHEMISTRY B, 2015, 3 (37) : 7401 - 7407
  • [46] A pH-responsive drug delivery system with an aggregation-induced emission feature for cell imaging and intracellular drug delivery
    Wang, Haibo
    Liu, Gongyan
    Gao, Haiqi
    Wang, Yunbing
    POLYMER CHEMISTRY, 2015, 6 (26) : 4715 - 4718
  • [47] Synthesis of pH-Responsive Chitosan Nanocapsules for the Controlled Delivery of Doxorubicin
    Chen, Chih-Kuang
    Wang, Qing
    Jones, Charles H.
    Yu, Yun
    Zhang, Hanguang
    Law, Wing-Cheung
    Lai, Cheng Kee
    Zeng, Qinghang
    Prasad, Paras N.
    Pfeifer, Blaine A.
    Cheng, Chong
    LANGMUIR, 2014, 30 (14) : 4111 - 4119
  • [48] pH-responsive mesoporous silica nanocarriers for anticancer drug delivery
    Zhou, Xiaojun
    Feng, Wei
    Qiu, Kexin
    Wang, Weizhong
    He, Chuanglong
    JOURNAL OF CONTROLLED RELEASE, 2013, 172 (01) : E22 - E23
  • [49] Mathematical modelling of drug delivery from pH-responsive nanocontainers
    Pontrelli, G.
    Toniolo, G.
    McGinty, S.
    Peri, D.
    Succi, S.
    Chatgilialoglu, C.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 131
  • [50] Functional polyurethane nanomicelle with pH-responsive drug delivery property
    Song, Yifan
    Chai, Yun
    Xu, Kai
    Zhang, Puyu
    E-POLYMERS, 2018, 18 (05): : 409 - 417