Development of a pH-responsive drug delivery system for enantioselective-controlled delivery of racemic drugs

被引:86
|
作者
Suedee, Roongnapa [1 ]
Jantarat, Chutima [1 ]
Lindner, Wolfgang [2 ]
Viernstein, Helmut [3 ]
Songkro, Sarunyoo [1 ]
Srichana, Teerapol [1 ]
机构
[1] Prince Songkla Univ, Mol Recognit Mat Res Unit, Drug Delivery Syst Excellence Ctr, Dept Pharmaceut Chem,Fac Pharmaceut Sci, Hat Yai 90112, Songkla, Thailand
[2] Univ Vienna, Inst Analyt Chem & Food Chem, A-1090 Vienna, Austria
[3] Univ Vienna, Dept Pharmaceut Technol & Biopharmaceut, A-1090 Vienna, Austria
关键词
Molecular imprinting; pH-responsive drug delivery; Controlled release; Chiral nanotechnology; Enantiomer; MOLECULARLY IMPRINTED POLYMER; CONTROLLED-RELEASE; CELLULOSE; MEMBRANE;
D O I
10.1016/j.jconrel.2009.10.011
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
This study aimed to develop enantioselective-controlled drug delivery systems for selective release of the required (S)-enantiomer in a dose formulation containing a racemic drug in response to pH stimuli. The recognition system was obtained from a nanoparticle-on-microsphere (NOM) molecularly imprinted polymer (MIP) with a multifunctional chiral cinchona anchor synthesised by suspension polymerisation using ethylene glycol dimethacrylate as a cross-linker. (S)-omeprazole was used as an imprinting molecule conferring stereoselectivity upon the polymers. The ability of the prepared recognition polymers to selectively rebind (S)-omeprazole was evident at different pH levels (the highest being at pH 7.4). The partial selective-release phenomenon of the (S)-enantiomer in MIP-containing composite cellulose membranes with increased vehicular racemic omeprazole concentrations was highly pH-dependent. Cinchona-bonded polymers imprinted with (S)-omeprazole could recognise the moldable contact site of (S)-omeprazole independently of its chirality; this is responsible for the delivery of (S)-enantiomer from racemic omeprazole. The controlled-release drug devices were fabricated with synthesised composite latex, and consisted of a pH stimuli-responsive poly (hydroxyethyl methacrylate) (HEMA) and polycaprolactone-triol (PCL-T) blend, and a MIP with preloaded drug, along with pH 7.4 buffer in the device's interior. The results demonstrate that drug delivery systems containing (S)-omeprazole imprinted cinchona-polymer nanoparticte-on-microspheres may maximise efficacy while minimising dose frequency. (C) 2009 Elsevier B.V. All rights reserved.
引用
下载
收藏
页码:122 / 131
页数:10
相关论文
共 50 条
  • [1] Microchannel system for rate-controlled, sequential, and pH-responsive drug delivery
    Yang, Dasom
    Lee, Jung Seung
    Choi, Chang-Kuk
    Lee, Hong-Pyo
    Cho, Seung-Woo
    Ryu, WonHyoung
    ACTA BIOMATERIALIA, 2018, 68 : 249 - 260
  • [2] pH-Responsive Nanoparticles for Drug Delivery
    Gao, Weiwei
    Chan, Juliana M.
    Farokhzad, Omid C.
    MOLECULAR PHARMACEUTICS, 2010, 7 (06) : 1913 - 1920
  • [3] pH-Responsive polymeric Janus containers for controlled drug delivery
    Zhao, Ziguang
    Zhu, Feiyan
    Qu, Xiaozhong
    Wu, Qiuhua
    Wang, Qian
    Zhang, Guolin
    Liang, Fuxin
    POLYMER CHEMISTRY, 2015, 6 (22) : 4144 - 4153
  • [4] pH-Responsive Lyotropic Liquid Crystals for Controlled Drug Delivery
    Negrini, Renata
    Mezzenga, Raffaele
    LANGMUIR, 2011, 27 (09) : 5296 - 5303
  • [5] AN EXPERIMENT TO INTRODUCE PH-RESPONSIVE HYDROGELS FOR CONTROLLED DRUG DELIVERY
    Farrell, Stephanie
    Vernengo, Jennifer
    Montgomery, Stephen E.
    Zhang, Yang
    Schwalbenberg, Peter John
    2012 ASEE ANNUAL CONFERENCE, 2012,
  • [6] Hydrogels: from controlled release to pH-responsive drug delivery
    Gupta, P
    Vermani, K
    Garg, S
    DRUG DISCOVERY TODAY, 2002, 7 (10) : 569 - 579
  • [7] Redox- and pH-responsive hydrogels: formulation and controlled drug delivery
    Yu, Lili
    Yao, Lin
    Yang, Kuan
    JOURNAL OF POROUS MATERIALS, 2016, 23 (06) : 1581 - 1589
  • [8] A fast pH-responsive IPN hydrogel: Synthesis and controlled drug delivery
    Wu, Wen
    Wang, Dong-sheng
    REACTIVE & FUNCTIONAL POLYMERS, 2010, 70 (09): : 684 - 691
  • [9] Novel pH-responsive multilayer magnetic nanoparticles for controlled drug delivery
    Seyed Farshad Motevalizadeh
    Mehdi Khoobi
    Niloofar Babanejad
    Elham Mohit
    Pouya Dehghankelishadi
    Hamid Akbari Javar
    Farid A. Dorkoosh
    Mohammad Ali Faramarzi
    Abbas Shafiee
    Journal of the Iranian Chemical Society, 2016, 13 : 1653 - 1666
  • [10] PEGylated hollow pH-responsive polymeric nanocapsules for controlled drug delivery
    Massoumi, Bakhshali
    Abbasian, Mojtaba
    Jahanban-Esfahlan, Rana
    Motamedi, Sanaz
    Samadian, Hadi
    Rezaei, Aram
    Derakhshankhah, Hossein
    Farnudiyan-Habibi, Amir
    Jaymand, Mehdi
    POLYMER INTERNATIONAL, 2020, 69 (05) : 519 - 527