Strong-field ionization of water: Nuclear dynamics revealed by varying the pulse duration

被引:21
|
作者
Howard, A. J. [1 ,2 ]
Cheng, C. [3 ]
Forbes, R. [2 ,4 ]
McCracken, G. A. [1 ,2 ]
Mills, W. H. [5 ]
Makhija, V [5 ]
Spanner, M. [6 ,7 ]
Weinacht, T. [3 ]
Bucksbaum, P. H. [1 ,2 ,4 ]
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] Stanford PULSE Inst, SLAC Natl Accelerator Lab, 2575 Sand Hill Rd, Menlo Pk, CA 94025 USA
[3] SUNY Stony Brook, Dept Phys, Stony Brook, NY 11794 USA
[4] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
[5] Univ Mary Washington, Dept Chem & Phys, Fredericksburg, VA 22401 USA
[6] Natl Res Council Canada, 100 Sussex Dr, Ottawa, ON K1A 0R6, Canada
[7] Univ Ottawa, Dept Phys, Ottawa, ON K1N 6N5, Canada
基金
美国国家科学基金会;
关键词
LASER-INDUCED ALIGNMENT; COULOMB EXPLOSION; MOLECULES; SPECTROSCOPY; STATES; H2O+;
D O I
10.1103/PhysRevA.103.043120
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Polyatomic molecules in strong laser fields can undergo substantial nuclear motion within tens of femtoseconds. Ion imaging methods based on dissociation or Coulomb explosion therefore have difficulty faithfully recording the geometry dependence of the field ionization that initiates the dissociation process. Here we compare the strong-field double ionization and subsequent dissociation of water (both H2O and D2O) in 10-fs and 40-fs 800-nm laser pulses. We find that 10-fs pulses turn off before substantial internuclear motion occurs, whereas rapid internuclear motion can take place during the double ionization process for 40-fs pulses. The short-pulse measurements are consistent with a simple tunnel ionization picture whose predictions help interpret the motion observed in the long-pulse measurements.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Streaking strong-field double ionization
    Kuebel, M.
    Katsoulis, G. P.
    Dube, Z.
    Naumov, A. Yu
    Villeneuve, D. M.
    Corkum, P. B.
    Staudte, A.
    Emmanouilidou, A.
    PHYSICAL REVIEW A, 2019, 100 (04)
  • [32] Strong-field multiple ionization of krypton
    Maeda, H
    Dammasch, M
    Eichmann, U
    Sandner, W
    Becker, A
    Faisal, FHM
    PHYSICAL REVIEW A, 2000, 62 (03): : 4
  • [33] Streak Camera for Strong-Field Ionization
    Kuebel, M.
    Dube, Z.
    Naumov, A. Yu.
    Spanner, M.
    Paulus, G. G.
    Kling, M. F.
    Villeneuve, D. M.
    Corkum, P. B.
    Staudte, A.
    PHYSICAL REVIEW LETTERS, 2017, 119 (18)
  • [34] Zeeman effect in strong-field ionization
    Liang, Jintai
    Zhou, Yueming
    Jiang, Wei-Chao
    Yu, Miao
    Li, Min
    Lu, Peixiang
    PHYSICAL REVIEW A, 2022, 105 (04)
  • [35] Molecular rotation in strong-field ionization
    Fischer, M.
    Handt, J.
    Rost, J. -M.
    Grossmann, F.
    Schmidt, R.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [36] Quantum entanglement in strong-field ionization
    Majorosi, Szilard
    Benedict, Mihaly G.
    Czirjak, Attila
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [37] Energetic electrons in strong-field ionization
    Reiss, HR
    PHYSICAL REVIEW A, 1996, 54 (03): : R1765 - R1768
  • [38] Nondipole effects in strong-field ionization
    Ivanov, I. A.
    Dubau, J.
    Kim, Kyung Taec
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [39] Strong-field ionization of plasmonic nanoparticles
    Saydanzad, E.
    Li, J.
    Thumm, U.
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [40] Energetic electrons in strong-field ionization
    Reiss, H.R.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1996, 54 (03):