Influence of Reactive Chain Extension on the Properties of 3D Printed Poly(Lactic Acid) Constructs

被引:27
|
作者
Grigora, Maria-Eirini [1 ]
Terzopoulou, Zoi [2 ]
Tsongas, Konstantinos [1 ]
Klonos, Panagiotis [2 ,3 ]
Kalafatakis, Nikolaos [4 ,5 ]
Bikiaris, Dimitrios N. [2 ]
Kyritsis, Apostolos [3 ]
Tzetzis, Dimitrios [1 ]
机构
[1] Int Hellen Univ, Sch Sci & Technol, Digital Mfg & Mat Characterizat Lab, 14 Km Thessaloniki, N Moudania 57001, Greece
[2] Aristotle Univ Thessaloniki, Dept Chem, Lab Polymer Chem & Technol, Thessaloniki 54124, Greece
[3] Natl Tech Univ Athens, Dept Phys, Zografou Campus, Athens 15780, Greece
[4] Fdn Res & Technol FORTH, Inst Elect Struct & Laser, Iraklion 70013, Greece
[5] Univ Crete, Dept Mat Sci & Technol, Iraklion 70013, Greece
关键词
additive manufacturing; 3D printing; biobased polymers; poly(lactic acid); chain extender; THERMAL-DEGRADATION; MELT RHEOLOGY; NANOMECHANICAL CHARACTERIZATION; MECHANICAL-PROPERTIES; POLYLACTIC ACID; POLYESTERS PET; NANOCOMPOSITES; PLA; BLENDS; PBT;
D O I
10.3390/polym13091381
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Fused deposition modeling (FDM) is currently the most popular 3D printing method, where thermoplastic polymers are predominantly used. Among them, the biobased poly(lactic acid) (PLA) governs the FDM filament market, with demand higher than supply, since not all grades of PLA are suitable for FDM filament production. In this work, the effect of a food grade chain extender (Joncryl ADR(R) 4400) on the physicochemical properties and printability of PLA marketed for injection molding was examined. All samples were characterized in terms of their mechanical and thermal properties. The microstructure of the filaments and 3D-printed fractured surfaces following tensile testing were examined with optical and scanning electron microscopy, respectively. Molecular weight and complex viscosity increased, while the melt flow index decreased after the incorporation of Joncryl, which resulted in filaments of improved quality and 3D-printed constructs with enhanced mechanical properties. Dielectric spectroscopy revealed that the bulk properties of PLA with respect to molecular mobility, both local and segmental, were, interestingly, not affected by the modifier. Indirectly, this may suggest that the major effects of the extender are on chain length, without inducing chain branching, at least not to a significant extent.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Degradation of 3D-printed poly(lactic acid) for biomedical applications
    Medeiros, Camila Beatriz de Souza
    Silva, Bruna Louise
    Medeiros, Antonio Marcos
    Melo, Jose Daniel Diniz
    Barbosa, Ana Paula Cysne
    POLYMER BULLETIN, 2024, 81 (07) : 6271 - 6281
  • [22] Investigation of the influence of salt remelting process on the mechanical, tribological, and thermal properties of 3D-printed poly(lactic acid) materials
    Yilmaz, Sinan
    Eyri, Busra
    Gul, Okan
    Karsli, N. Gamze
    Yilmaz, Taner
    POLYMER ENGINEERING AND SCIENCE, 2024, 64 (01): : 17 - 30
  • [23] Processing and mechanical properties of novel biodegradable poly-lactic acid/Zn 3D printed scaffolds for application in tissue regeneration
    Pascual-Gonzalez, C.
    de la Vega, J.
    Thompson, C.
    Fernandez-Blazquez, J. P.
    Herraez-Molinero, D.
    Biurrun, N.
    Lizarralde, I.
    del Rio, J. Sanchez
    Gonzalez, C.
    LLorca, J.
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2022, 132
  • [24] The study of mechanical properties of poly(lactic) acid PLA-based 3D printed filament under temperature and environmental conditions
    Bakar, Ahmad Adnan Bin Abu
    Zainuddin, Muhammad Zulhilmi Bin
    Adam, Ahmad Nurhelmy Bin
    Noor, Ikhwan Syafiq Bin Mohd
    Tamchek, Nizam Bin
    Alauddin, Muhammad Syafiq Bin
    Ghazali, Mohd Ifwat Bin Mohd
    MATERIALS TODAY-PROCEEDINGS, 2022, 67 : 652 - 658
  • [25] Influence of the printing parameters on the properties of Poly(lactic acid) scaffolds obtained by fused deposition modeling 3D printing
    Nascimento, Abraao C. D., Jr.
    Mota, Raquel C. D. A. G.
    Menezes, Livia R. D.
    Silva, Emerson O. D.
    POLYMERS & POLYMER COMPOSITES, 2021, 29 (9_SUPPL): : S1052 - S1062
  • [26] The in-vitro biological properties of 3D printed poly lactic acid/akermanite composite porous scaffold for bone tissue engineering
    Arastouei, Masoud
    Khodaei, Mohammad
    Atyabi, Seyed Mohammad
    Nodoushan, Milad Jafari
    MATERIALS TODAY COMMUNICATIONS, 2021, 27
  • [27] Experimental assessment on the contact characteristics of 3D printed flexible poly lactic acid (PLA) soft fingertips
    Yuvaraj, S.
    Raja, K. Venkatesh
    Bakkiyaraj, M.
    Malayalamurthi, R.
    Magibalan, S.
    Thavasilingam, K.
    Muralidharan, K.
    INTERNATIONAL JOURNAL OF MATERIALS RESEARCH, 2022, 113 (12) : 1033 - 1044
  • [28] 3D printed poly(lactic acid)-based nanocomposite scaffolds with bioactive coatings for tissue engineering applications
    Grigora, Maria-Eirini
    Terzopoulou, Zoi
    Baciu, Diana
    Steriotis, Theodore
    Charalambopoulou, Georgia
    Gounari, Eleni
    Bikiaris, Dimitrios N.
    Tzetzis, Dimitrios
    JOURNAL OF MATERIALS SCIENCE, 2023, 58 (06) : 2740 - 2763
  • [29] Recycled poly(lactic acid)-based 3D printed sustainable biocomposites: a comparative study with injection molding
    Cisneros-Lopez, E. O.
    Pal, A. K.
    Rodriguez, A. U.
    Wu, F.
    Misra, M.
    Mielewski, D. F.
    Kiziltas, A.
    Mohanty, A. K.
    MATERIALS TODAY SUSTAINABILITY, 2020, 7-8
  • [30] Recycled poly(lactic acid)–based 3D printed sustainable biocomposites: a comparative study with injection molding
    Bioproducts Discovery and Development Centre, Department of Plant Agriculture, Crop Science Building, University of Guelph, 50 Stone Road East, Guelph
    Ontario, Canada
    不详
    Ontario, Canada
    不详
    MI
    48124, United States
    Mater. Today Sustainability, 2020,