Deep Residual Learning for Accelerated MRI Using Magnitude and Phase Networks
被引:232
|
作者:
Lee, Dongwook
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
Lee, Dongwook
[1
]
Yoo, Jaejun
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
Yoo, Jaejun
[1
]
论文数: 引用数:
h-index:
机构:
Tak, Sungho
[2
]
Ye, Jong Chul
论文数: 0引用数: 0
h-index: 0
机构:
Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South KoreaKorea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
Ye, Jong Chul
[1
]
机构:
[1] Korea Adv Inst Sci & Technol, Dept Bio & Brain Engn, Daejeon 34141, South Korea
[2] Korea Basic Sci Inst, Bioimaging Res Team, Ochang, South Korea
Compressed sensing MRI;
deep convolutional framelets;
deep learning;
parallel imaging;
CONVOLUTIONAL NEURAL-NETWORK;
RECONSTRUCTION;
FRAMELETS;
FRAMEWORK;
SENSE;
D O I:
10.1109/TBME.2018.2821699
中图分类号:
R318 [生物医学工程];
学科分类号:
0831 ;
摘要:
Objective: Accelerated magnetic resonance (MR) image acquisition with compressed sensing (CS) and parallel imaging is a powerful method to reduce MR imaging scan time. However, many reconstruction algorithms have high computational costs. To address this, we investigate deep residual learning networks to remove aliasing artifacts from artifact corrupted images. Methods: The deep residual learning networks are composed of magnitude and phase networks that are separately trained. If both phase and magnitude information are available, the proposed algorithm can work as an iterative k-space interpolation algorithm using framelet representation. When only magnitude data are available, the proposed approach works as an image domain postprocessing algorithm. Results: Even with strong coherent aliasing artifacts, the proposed network successfully learned and removed the aliasing artifacts, whereas current parallel and CS reconstruction methods were unable to remove these artifacts. Conclusion: Comparisons using single and multiple coil acquisition show that the proposed residual network provides good reconstruction results with orders of magnitude faster computational time than existing CS methods. Significance: The proposed deep learning framework may have a great potential for accelerated MR reconstruction by generating accurate results immediately.
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Johnson, Patricia M.
Lin, Dana J.
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Lin, Dana J.
Zbontar, Jure
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Meta Res FAIR, Menlo Pk, CA USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Zbontar, Jure
Zitnick, C. Lawrence
论文数: 0引用数: 0
h-index: 0
机构:
Meta Res FAIR, Menlo Pk, CA USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Zitnick, C. Lawrence
Sriram, Anuroop
论文数: 0引用数: 0
h-index: 0
机构:
Meta Res FAIR, Menlo Pk, CA USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Sriram, Anuroop
Muckley, Matthew
论文数: 0引用数: 0
h-index: 0
机构:
Meta Res, New York, NY USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Muckley, Matthew
Babb, James S.
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Babb, James S.
Kline, Mitchell
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Kline, Mitchell
Ciavarra, Gina
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Ciavarra, Gina
Alaia, Erin
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Alaia, Erin
Samim, Mohammad
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Samim, Mohammad
Walter, William R.
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Walter, William R.
Calderon, Liz
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Calderon, Liz
Pock, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Graz Univ Technol, Inst Comp Graph & Vis, Graz, AustriaNew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Pock, Thomas
Sodickson, Daniel K.
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
Sodickson, Daniel K.
Recht, Michael P.
论文数: 0引用数: 0
h-index: 0
机构:
New York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USANew York Univ, Dept Radiol, Grossman Sch Med, 650 1st Ave, New York, NY 10016 USA
机构:
SUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USASUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USA
Zhang, Zongpai
Yang, Huiyuan
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USASUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USA
Yang, Huiyuan
Guo, Yanchen
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USASUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USA
Guo, Yanchen
Bolo, Nicolas R.
论文数: 0引用数: 0
h-index: 0
机构:
Beth Israel Deaconess Med Ctr, Dept Psychiat, Boston, MA 02215 USA
Harvard Med Sch, Boston, MA 02215 USASUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USA
Bolo, Nicolas R.
Keshavan, Matcheri
论文数: 0引用数: 0
h-index: 0
机构:
Beth Israel Deaconess Med Ctr, Dept Psychiat, Boston, MA 02215 USA
Harvard Med Sch, Boston, MA 02215 USASUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USA
Keshavan, Matcheri
DeRosa, Eve
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Psychol, Ithaca, NY 14850 USASUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USA
DeRosa, Eve
Anderson, Adam K.
论文数: 0引用数: 0
h-index: 0
机构:
Cornell Univ, Dept Psychol, Ithaca, NY 14850 USASUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USA
Anderson, Adam K.
Alsop, David C.
论文数: 0引用数: 0
h-index: 0
机构:
Harvard Med Sch, Boston, MA 02215 USA
Beth Israel Deaconess Med Ctr, Dept Radiol, Boston, MA 02215 USASUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USA
Alsop, David C.
Yin, Lijun
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USASUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USA
Yin, Lijun
Dai, Weiying
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USASUNY Binghamton, Dept Comp Sci, Binghamton, NY 13902 USA