Baroclinic vorticity production in protoplanetary disks. I. Vortex formation

被引:94
|
作者
Petersen, Mark R. [1 ]
Julien, Keith
Stewart, Glen R.
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
[2] Los Alamos Natl Lab, Computat & Computat Sci Div, Los Alamos, NM USA
[3] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM USA
[4] Univ Colorado, Atmospher & Space Phys Lab, Boulder, CO 80309 USA
来源
ASTROPHYSICAL JOURNAL | 2007年 / 658卷 / 02期
基金
美国国家科学基金会;
关键词
accretion; accretion disks; circumstellar matter; hydrodynamics; instabilities; methods : numerical; solar system : formation; turbulence;
D O I
10.1086/511513
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The formation of vortices in protoplanetary disks is explored via pseudospectral numerical simulations of an anelasticgas model. This model is a coupled set of equations for vorticity and temperature in two dimensions that includes baroclinic vorticity production and radiative cooling. Vortex formation is unambiguously shown to be caused by baroclinicity, because (1) these simulations have zero initial perturbation vorticity and a nonzero initial temperature distribution, and ( 2) turning off the baroclinic term halts vortex formation, as shown by an immediate drop in kinetic energy and vorticity. Vortex strength increases with larger background temperature gradients, warmer background temperatures, larger initial temperature perturbations, higher Reynolds number, and higher resolution. In the simulations presented here, vortices form when the background temperatures are similar to 200 K and vary radially as r(-0.25), the initial vorticity perturbations are zero, the initial temperature perturbations are 5% of the background, and the Reynolds number is 10(9). A sensitivity study consisting of 74 simulations showed that as resolution and Reynolds number increase, vortices can form with smaller initial temperature perturbations, lower background temperatures, and smaller background temperature gradients. For the parameter ranges of these simulations, the disk is shown to be convectively stable by the Solberg-Hoiland criteria.
引用
收藏
页码:1236 / 1251
页数:16
相关论文
共 50 条
  • [41] Young stars in gas-dust disks. I. Fomalhaut
    Ruban, E. V.
    Arkharov, A. A.
    ASTROPHYSICS, 2012, 55 (01) : 53 - 69
  • [42] Young stars in gas-dust disks. I. Fomalhaut
    E. V. Ruban
    A. A. Arkharov
    Astrophysics, 2012, 55 : 53 - 69
  • [43] NATURE OF TRANSITION CIRCUMSTELLAR DISKS. I. THE OPHIUCHUS MOLECULAR CLOUD
    Cieza, Lucas A.
    Schreiber, Matthias R.
    Romero, Gisela A.
    Mora, Marcelo D.
    Merin, Bruno
    Swift, Jonathan J.
    Orellana, Mariana
    Williams, Jonathan P.
    Harvey, Paul M.
    Evans, Neal J., II
    ASTROPHYSICAL JOURNAL, 2010, 712 (02): : 925 - 941
  • [45] Protoplanetary formation. I. Neptune
    Bryden, G
    Lin, DNC
    Ida, S
    ASTROPHYSICAL JOURNAL, 2000, 544 (01): : 481 - 495
  • [46] Formulas for the barotropic and baroclinic components of vorticity with applications to vortex formation near the ground
    DaviesJones, R
    SEVENTH CONFERENCE ON MESOSCALE PROCESSES, 1996, : 14 - 16
  • [47] Nonlinear Outcome of Coagulation Instability in Protoplanetary Disks. I. First Numerical Study of Accelerated Dust Growth and Dust Concentration at Outer Radii
    Tominaga, Ryosuke T.
    Kobayashi, Hiroshi
    Inutsuka, Shu-ichiro
    ASTROPHYSICAL JOURNAL, 2022, 937 (01):
  • [48] Formation of Galactic Disks. I. Why Did the Milky Way's Disk Form Unusually Early?
    Semenov, Vadim A.
    Conroy, Charlie
    Chandra, Vedant
    Hernquist, Lars
    Nelson, Dylan
    ASTROPHYSICAL JOURNAL, 2024, 962 (01):
  • [49] Evolution of self-gravitating magnetized disks. I. axisymmetric simulations
    Fromang, S
    Balbus, SA
    De Villiers, JP
    ASTROPHYSICAL JOURNAL, 2004, 616 (01): : 357 - 363
  • [50] GLOBAL SIMULATIONS OF ACCRETION DISKS. I. CONVERGENCE AND COMPARISONS WITH LOCAL MODELS
    Sorathia, Kareem A.
    Reynolds, Christopher S.
    Stone, James M.
    Beckwith, Kris
    ASTROPHYSICAL JOURNAL, 2012, 749 (02):