Contrast structures for a quasilinear Sobolev-type equation with unbalanced nonlinearity

被引:0
|
作者
Bykov, A. A. [1 ]
Nefedov, N. N. [1 ]
Sharlo, A. S. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Phys, Moscow 119991, Russia
基金
俄罗斯基础研究基金会;
关键词
nonlinear partial differential equations; comparison principle; contrast structure; internal transition layer; existence theorem; asymptotic expansion; BOUNDARY;
D O I
10.1134/S096554251408003X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of a solution to a generalized Kolmogorov-Petrovskii-Piskunov equation is proved and its asymptotic expansion of the internal transition layer type is constructed. The convergence of the asymptotics is proved by applying the asymptotic comparison principle developed for a new class of problems.
引用
收藏
页码:1234 / 1243
页数:10
相关论文
共 50 条
  • [11] An optimality criterion in a control problem for a Sobolev-type linear equation
    Plekhanova, M. V.
    Fedorov, V. Ye.
    [J]. JOURNAL OF COMPUTER AND SYSTEMS SCIENCES INTERNATIONAL, 2007, 46 (02) : 248 - 254
  • [12] Novel waves structures for the nonclassical Sobolev-type equation in unipolar semiconductor with its stability analysis
    Shahzad, Tahir
    Ahmed, Muhammad Ozair
    Baber, Muhammad Zafarullah
    Ahmed, Nauman
    Akguel, Ali
    El Din, Sayed M.
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [13] Blowup of solutions to a class of Sobolev-type quasilinear dissipative wave equations with sources
    Korpusov, MO
    Sveshnikov, AG
    [J]. DOKLADY MATHEMATICS, 2005, 72 (02) : 787 - 790
  • [14] Asymptotics for a Sobolev type equation with a critical nonlinearity
    Kaikina, E. I.
    Naumkin, P. I.
    Shishmarev, I. A.
    [J]. DIFFERENTIAL EQUATIONS, 2007, 43 (05) : 673 - 687
  • [15] An optimality criterion in a control problem for a Sobolev-type linear equation
    M. V. Plekhanova
    V. Ye. Fedorov
    [J]. Journal of Computer and Systems Sciences International, 2007, 46 : 248 - 254
  • [16] Asymptotics for a sobolev type equation with a critical nonlinearity
    E. I. Kaikina
    P. I. Naumkin
    I. A. Shishmarev
    [J]. Differential Equations, 2007, 43 : 673 - 687
  • [17] Inverse problem for an abstract neutral differential equation of Sobolev-type
    Malik, Muslim
    Ruhil, Santosh
    [J]. RESULTS IN CONTROL AND OPTIMIZATION, 2023, 11
  • [18] ON A SOBOLEV-TYPE PROJECTIVE OPERATOR
    PORTNOV, VR
    [J]. DOKLADY AKADEMII NAUK SSSR, 1969, 189 (02): : 258 - &
  • [19] Solution Blow-up for a New Stationary Sobolev-Type Equation
    Korpusov, M. O.
    Sveshnikov, A. G.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2010, 50 (05) : 831 - 847
  • [20] Solution blow-up for a new stationary Sobolev-type equation
    M. O. Korpusov
    A. G. Sveshnikov
    [J]. Computational Mathematics and Mathematical Physics, 2010, 50 : 831 - 847