Generalizations of MICZ-Kepler system

被引:2
|
作者
Nersessian, A. [1 ,2 ]
机构
[1] Artsakh State Univ, Stepanakert, Armenia
[2] Yerevan State Univ, Yerevan, Armenia
关键词
MODELS;
D O I
10.1134/S1063778810030117
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We discuss the generalizations of the MICZ-Kepler system (the system describing the motion of the charged particle in the field of Dirac dyon), to the curved spaces, arbitrary potentials, and to the multidyon background.
引用
收藏
页码:489 / 493
页数:5
相关论文
共 50 条
  • [1] Generalizations of MICZ-Kepler system
    A. Nersessian
    Physics of Atomic Nuclei, 2010, 73 : 489 - 493
  • [2] Multicenter MICZ-Kepler systems
    A. P. Nersessian
    V. R. Ohanyan
    Theoretical and Mathematical Physics, 2008, 155 : 618 - 626
  • [3] Multicenter MICZ-Kepler systems
    Nersessian, A. P.
    Ohanyan, V. R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 155 (01) : 618 - 626
  • [4] MICZ-Kepler problems in all dimensions
    Meng, Guowu
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (03)
  • [5] Generalized MICZ-Kepler system, duality, polynomial, and deformed oscillator algebras
    Marquette, Ian
    JOURNAL OF MATHEMATICAL PHYSICS, 2010, 51 (10)
  • [6] MICZ-Kepler: Dynamics on the cone over SO(n)
    Richard Montgomery
    Regular and Chaotic Dynamics, 2013, 18 : 600 - 607
  • [7] MICZ-Kepler: Dynamics on the cone over SO(n)
    Montgomery, Richard
    REGULAR & CHAOTIC DYNAMICS, 2013, 18 (06): : 600 - 607
  • [8] Generalized MICZ-Kepler problems and unitary highest weight modules, II
    Meng, Guowu
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 : 663 - 678
  • [9] The number radial coherent states for the generalized MICZ-Kepler problem
    Salazar-Ramirez, M.
    Ojeda-Guillen, D.
    Mota, R. D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [10] MICZ-Kepler systems in noncommutative space and duality of force laws
    Guha, Partha
    Harikumar, E.
    Zuhair, N. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (32):