MICZ-Kepler: Dynamics on the cone over SO(n)

被引:2
|
作者
Montgomery, Richard [1 ]
机构
[1] Univ Calif Santa Cruz, Dept Math, Santa Cruz, CA 95064 USA
来源
REGULAR & CHAOTIC DYNAMICS | 2013年 / 18卷 / 06期
基金
美国国家科学基金会;
关键词
Kepler problem; MICZ-K system; co-adjoint orbit; Sternberg phase space; symplectic reduction; superintegrable systems; YANG-MILLS FIELD; CLASSICAL PARTICLE;
D O I
10.1134/S1560354713060038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the n-dimensional MICZ-Kepler system arises from symplectic reduction of the "Kepler problem" on the cone over the rotation group SO(n). As a corollary we derive an elementary formula for the general solution of the MICZ-Kepler problem. The heart of the computation is the observation that the additional MICZ-Kepler potential, |I center dot|(2)/r (2), agrees with the rotational part of the cone's kinetic energy.
引用
收藏
页码:600 / 607
页数:8
相关论文
共 50 条
  • [1] MICZ-Kepler: Dynamics on the cone over SO(n)
    Richard Montgomery
    Regular and Chaotic Dynamics, 2013, 18 : 600 - 607
  • [2] Multicenter MICZ-Kepler systems
    A. P. Nersessian
    V. R. Ohanyan
    Theoretical and Mathematical Physics, 2008, 155 : 618 - 626
  • [3] Generalizations of MICZ-Kepler system
    Nersessian, A.
    PHYSICS OF ATOMIC NUCLEI, 2010, 73 (03) : 489 - 493
  • [4] Generalizations of MICZ-Kepler system
    A. Nersessian
    Physics of Atomic Nuclei, 2010, 73 : 489 - 493
  • [5] Multicenter MICZ-Kepler systems
    Nersessian, A. P.
    Ohanyan, V. R.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2008, 155 (01) : 618 - 626
  • [6] MICZ-Kepler problems in all dimensions
    Meng, Guowu
    JOURNAL OF MATHEMATICAL PHYSICS, 2007, 48 (03)
  • [7] Generalized MICZ-Kepler problems and unitary highest weight modules, II
    Meng, Guowu
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 : 663 - 678
  • [8] The number radial coherent states for the generalized MICZ-Kepler problem
    Salazar-Ramirez, M.
    Ojeda-Guillen, D.
    Mota, R. D.
    JOURNAL OF MATHEMATICAL PHYSICS, 2016, 57 (02)
  • [9] MICZ-Kepler systems in noncommutative space and duality of force laws
    Guha, Partha
    Harikumar, E.
    Zuhair, N. S.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (32):
  • [10] Generalized MICZ-Kepler problems and unitary highest weight modules
    Meng, Guowu
    Zhang, Ruibin
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (04)