Convergence of multigrid method for edge-based finite-element method

被引:5
|
作者
Watanabe, K [1 ]
Igarashi, H [1 ]
Honma, T [1 ]
机构
[1] Hokkaido Univ, Grad Sch Engn, Div Syst & Informat Engn, Kita Ku, Sapporo, Hokkaido 0608628, Japan
关键词
convergence; eigenvalue; multigrid (MG);
D O I
10.1109/TMAG.2003.810356
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper discusses robustness of the multigrid (MG) method against distortion of finite elements. The convergence of MG method becomes considerably worse as the finite elements become flat. It is shown that the smoother used in the MG method cannot effectively eliminate the high-frequency component of the residue for flat elements, and this gives rise to deterioration in the convergence. Moreover, the multigrid method with conjugate gradient (CG) smoother is shown to be more robust against mesh distortion than that with Gauss-Seidel smoother.
引用
收藏
页码:1674 / 1676
页数:3
相关论文
共 50 条
  • [21] Evaluation of Fracture Parameters by Coupling the Edge-Based Smoothed Finite Element Method and the Scaled Boundary Finite Element Method
    Surendran, M.
    Pramod, A. L. N.
    Natarajan, S.
    [J]. JOURNAL OF APPLIED AND COMPUTATIONAL MECHANICS, 2019, 5 (03): : 540 - 551
  • [22] Method of moments analysis of a waveguide crossed slot by using the eigenmode basis functions derived by the edge-based finite-element method
    Hirano, T
    Hirokawa, J
    Ando, M
    [J]. IEE PROCEEDINGS-MICROWAVES ANTENNAS AND PROPAGATION, 2000, 147 (05) : 349 - 353
  • [23] ON MAXIMUM NORM CONVERGENCE OF THE FINITE-ELEMENT METHOD
    YSERENTANT, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (02): : 91 - 100
  • [24] CONVERGENCE ANALYSIS FOR AN ELEMENT-BY-ELEMENT FINITE-ELEMENT METHOD
    LI, ZP
    REED, MB
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1995, 123 (1-4) : 33 - 42
  • [25] An Edge-based cascadic multigrid method for H(curl) problems
    Wang, Jinxuan
    Pan, Kejia
    Wu, Xiaoxin
    [J]. NUMERICAL ALGORITHMS, 2024,
  • [26] EXTRAPOLATION COMBINED WITH MULTIGRID METHOD FOR SOLVING FINITE-ELEMENT EQUATIONS
    HUANG, HC
    E, WN
    MU, M
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 1986, 4 (04) : 362 - 367
  • [27] Anisotropic modeling with geometric multigrid preconditioned finite-element method
    Sun, Qingtao
    Zhang, Runren
    Chen, Ke
    Feng, Naixing
    Hu, Yunyun
    [J]. GEOPHYSICS, 2022, 87 (03) : A33 - A36
  • [28] A MULTIGRID VERSION OF A SIMPLE FINITE-ELEMENT METHOD FOR THE STOKES PROBLEM
    PITKARANTA, J
    SAARINEN, T
    [J]. MATHEMATICS OF COMPUTATION, 1985, 45 (171) : 1 - 14
  • [29] AN H-P- MULTIGRID METHOD FOR FINITE-ELEMENT ANALYSIS
    FIELD, DA
    PRESSBURGER, Y
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1993, 36 (06) : 893 - 908
  • [30] 3-D anisotropic modelling of geomagnetic depth sounding based on unstructured edge-based finite-element method
    Wang, Ning
    Yin, Changchun
    Gao, Lingqi
    Qiu, Changkai
    Ren, Xiuyan
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2023, 235 (01) : 178 - 199