Estimating US Background Ozone Using Data Fusion

被引:8
|
作者
Skipper, T. Nash [1 ]
Hu, Yongtao [1 ]
Odman, M. Talat [1 ]
Henderson, Barron H. [2 ]
Hogrefe, Christian [2 ]
Mathur, Rohit [2 ]
Russell, Armistead G. [1 ]
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Atlanta, GA 30332 USA
[2] US EPA, Durham, NC 27709 USA
关键词
CMAQ MODELING SYSTEM; LAND-USE REGRESSION; AIR; TRANSPORT; EMISSIONS; IMPACTS;
D O I
10.1021/acs.est.0c08625
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
US background (US-B) ozone (O-3) is the O-3 that would be present in the absence of US anthropogenic (US-A) emissions. US-B O-3 varies by location and season and can make up a large, sometimes dominant, portion of total O-3. Typically, US-B O-3 is quantified using a chemical transport model (CTM) though results are uncertain due to potential errors in model process descriptions and inputs, and there are significant differences in various model estimates of US-B O-3. We develop and apply a method to fuse observed O-3 with US-B O-3 simulated by a regional CTM (CMAQ). We apportion the model bias as a function of space and time to US-B and US-A O-3. Trends in O3 bias are explored across different simulation years and varying model scales. We found that the CTM US-B O-3 estimate was typically biased low in spring and high in fall across years (2016-2017) and model scales. US-A O-3 was biased high on average, with bias increasing for coarser resolution simulations. With the application of our data fusion bias adjustment method, we estimate a 28% improvement in the agreement of adjusted US-B O-3. Across the four estimates, we found annual mean CTM-simulated US-B O-3 ranging from 30 to 37 ppb with the spring mean ranging from 32 to 39 ppb. After applying the bias adjustment, we found annual mean US-B O-3 ranging from 32 to 33 ppb with the spring mean ranging from 37 to 39 ppb.
引用
收藏
页码:4504 / 4512
页数:9
相关论文
共 50 条
  • [41] On estimating the background of remote sensing gamma-ray spectroscopic data
    Zhu, Meng-Hua
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 832 : 259 - 263
  • [42] Study of data fusion algorithms for estimating projectile's attitude
    Wang, Yong
    Chen, Jia-Bin
    Liu, Zhi-De
    Song, Chun-Lei
    [J]. Beijing Ligong Daxue Xuebao/Transaction of Beijing Institute of Technology, 2011, 31 (05): : 533 - 536
  • [43] Background Extraction Using Random Walk Image Fusion
    Hua, Kai-Lung
    Wang, Hong-Cyuan
    Yeh, Chih-Hsiang
    Cheng, Wen-Huang
    Lai, Yu-Chi
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (01) : 423 - 435
  • [44] FUSION OF SPECTRAL AND ELECTROCHEMICAL SENSOR DATA FOR ESTIMATING SOIL MACRONUTRIENTS
    La, W. J.
    Sudduth, K. A.
    Kim, H. J.
    Chung, S. O.
    [J]. TRANSACTIONS OF THE ASABE, 2016, 59 (04) : 787 - 794
  • [45] Estimating and Exploiting the Degree of Independent Information in Distributed Data Fusion
    Julier, Simon J.
    [J]. FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 772 - 779
  • [46] Estimating background spectra
    Tse, M. K.
    Choinsky, J.
    Carbon, D. F.
    Knuth, K. H.
    [J]. BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2007, 954 : 322 - +
  • [47] Multi-sensor data fusion and comparison of total column ozone
    Nirala, Mohan
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (15) : 4553 - 4573
  • [48] Improved western US background ozone estimates via constraining nonlocal and local source contributions using Aura TES and OMI observations
    Huang, Min
    Bowman, Kevin W.
    Carmichael, Gregory R.
    Lee, Meemong
    Chai, Tianfeng
    Spak, Scott N.
    Henze, Daven K.
    Darmenov, Anton S.
    da Silva, Arlindo M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2015, 120 (08) : 3572 - 3592
  • [49] On the background photochemistry of tropospheric ozone
    Crutzen, PJ
    Lawrence, MG
    Pöschl, U
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1999, 51 (01) : 123 - 146
  • [50] A data mining approach to estimating rooftop photovoltaic potential in the US
    Phillips, Caleb
    Elmore, Ryan
    Melius, Jenny
    Gagnon, Pieter
    Margolis, Robert
    [J]. JOURNAL OF APPLIED STATISTICS, 2019, 46 (03) : 385 - 394