ON EFFICIENTLY SOLVING THE SUBPROBLEMS OF A LEVEL-SET METHOD FOR FUSED LASSO PROBLEMS

被引:43
|
作者
Li, Xudong [1 ]
Sun, Defeng [2 ]
Toh, Kim-Chuan [3 ,4 ]
机构
[1] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Hong Kong, Peoples R China
[3] Natl Univ Singapore, Dept Math, 10 Lower Kent Ridge Rd, Singapore, Singapore
[4] Natl Univ Singapore, Inst Operat Res & Analyt, 10 Lower Kent Ridge Rd, Singapore, Singapore
关键词
level-set method; fused lasso; convex composite programming; generalized Jacobian; semismooth Newton method; AUGMENTED LAGRANGIAN METHOD; NEWTON; ALGORITHM; OPTIMIZATION; SMOOTHNESS;
D O I
10.1137/17M1136390
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In applying the level-set method developed in [E. Van den Berg and M. P. Friedlander, SIAM J. Sci. Comput., 31 (2008), pp. 890-912] and [E. Van den Berg and M. P. Friedlander, SIAM J. Optim., 21 (2011), pp. 1201-1229] to solve the fused lasso problems, one needs to solve a sequence of regularized least squares subproblems. In order to make the level-set method practical, we develop a highly efficient inexact semismooth Newton based augmented Lagrangian method for solving these subproblems. The efficiency of our approach is based on several ingredients that constitute the main contributions of this paper. First, an explicit formula for constructing the generalized Jacobian of the proximal mapping of the fused lasso regularizer is derived. Second, the special structure of the generalized Jacobian is carefully extracted and analyzed for the efficient implementation of the semismooth Newton method. Finally, numerical results, including the comparison between our approach and several state-of-the-art solvers, on real data sets are presented to demonstrate the high efficiency and robustness of our proposed algorithm in solving challenging large-scale fused lasso problems.
引用
收藏
页码:1842 / 1866
页数:25
相关论文
共 50 条
  • [41] Parametric level-set inverse problems with stochastic background estimation
    Belliveau, Patrick
    Haber, Eldad
    INVERSE PROBLEMS, 2023, 39 (07)
  • [42] A global mass correction scheme for the level-set method
    Yap, Y. F.
    Chai, J. C.
    Wong, T. N.
    Toh, K. C.
    Zhang, H. Y.
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2006, 50 (05) : 455 - 472
  • [43] Level-set method for island dynamics in epitaxial growth
    Ratsch, C
    Gyure, MF
    Caflisch, RE
    Gibou, F
    Petersen, M
    Kang, M
    Garcia, J
    Vvedensky, DD
    PHYSICAL REVIEW B, 2002, 65 (19) : 1954031 - 19540313
  • [44] A level-set immersed interface method for simulating the electrohydrodynamics
    Xu, Jian-Jun
    Shi, Weidong
    Hu, Wei-Fan
    Huang, Jun-Jie
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 400
  • [45] A Memory and Computation Efficient Sparse Level-Set Method
    Wladimir J. van der Laan
    Andrei C. Jalba
    Jos B. T. M. Roerdink
    Journal of Scientific Computing, 2011, 46 : 243 - 264
  • [46] A Memory and Computation Efficient Sparse Level-Set Method
    van der Laan, Wladimir J.
    Jalba, Andrei C.
    Roerdink, Jos B. T. M.
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (02) : 243 - 264
  • [47] Level-set method for workspace analysis of serial manipulators
    Ottaviano, Erika
    Husty, Manfred
    Ceccarelli, Marco
    ADVANCES IN ROBOT KINEMATICS: MECHANISMS AND MOTION, 2006, : 307 - +
  • [48] A level-set method for modeling the evolution of glacier geometry
    Pralong, A
    Funk, M
    JOURNAL OF GLACIOLOGY, 2004, 50 (171) : 485 - 491
  • [49] A Level-Set Method for Skinning Animated Particle Data
    Bhattacharya, Haimasree
    Gao, Yue
    Bargteil, Adam W.
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2015, 21 (03) : 315 - 327
  • [50] Comparative study of MPS method and level-set method for sloshing flows
    Yu-xin Zhang
    De-cheng Wan
    Takanori Hino
    Journal of Hydrodynamics, 2014, 26 : 577 - 585