Representative band selection for hyperspectral image classification

被引:44
|
作者
Yang, Ronglu [1 ]
Su, Lifan [1 ]
Zhao, Xibin [1 ]
Wan, Hai [1 ]
Sun, Jiaguang [1 ]
机构
[1] Tsinghua Univ, Sch Software, Key Lab Informat Syst Secur, Minist Educ,Tsinghua Natl Lab Informat Sci & Tech, Beijing 100086, Peoples R China
关键词
High dimensional image; Band selection; Pattern recognition; Feature selection; Disjoint information;
D O I
10.1016/j.jvcir.2017.02.002
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High dimensional curse for hyperspectral images is one major challenge in image classification. In this work, we introduce a novel spectral band selection method by representative band mining. In the proposed method, the distance between two spectral bands is measured by using disjoint information. For band selection, all spectral bands are first grouped into clusters, and representative bands are selected from these clusters. Different from existing clustering-based band selection methods which select bands from each cluster individually, the proposed method aims to select representative bands simultaneously by exploring the relationship among all band clusters. The optimal representative band selection is based on the criteria of minimizing the distance inside each cluster and maximizing the distance among different representative bands. These selected bands can be further applied in hyperspectral image classification. Experiments are conducted on the 92AV3C Indian Pine data set. Experimental results show that the disjoint information-based spectral band distance measure is effective and the proposed representative band selection approach outperforms state-of-the-art methods for high dimensional image classification. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:396 / 403
页数:8
相关论文
共 50 条
  • [11] Hyperspectral Image Classification Using Band Selection and Morphological Profiles
    Tan, Kun
    Li, Erzhu
    Du, Qian
    Du, Peijun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2014, 7 (01) : 40 - 48
  • [12] HYPERSPECTRAL IMAGE CLASSIFICATION USING BAND SELECTION AND MORPHOLOGICAL PROFILE
    Tan, Kun
    Li, Erzhu
    Du, Qian
    Du, Peijun
    2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [13] Attend in Bands: Hyperspectral Band Weighting and Selection for Image Classification
    Wang, Jing
    Zhou, Jun
    Huang, Weiqing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (12) : 4712 - 4727
  • [14] Data Driven Joint Hyperspectral Band Selection and Image Classification
    Mdrafi, Robiulhossain
    Gurbuz, Ali Cafer
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1736 - 1739
  • [15] A Correlation based Band Selection Approach for Hyperspectral Image Classification
    Sarmah, Sonia
    Kalita, Sanjib Kumar
    2016 IEEE 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING (IACC), 2016, : 271 - 274
  • [16] Deep Reinforcement Learning for Band Selection in Hyperspectral Image Classification
    Mou, Lichao
    Saha, Sudipan
    Hua, Yuansheng
    Bovolo, Francesca
    Bruzzone, Lorenzo
    Zhu, Xiao Xiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [17] Semisupervised Band Selection With Graph Optimization for Hyperspectral Image Classification
    He, Fang
    Nie, Feiping
    Wang, Rong
    Jia, Weimin
    Zhang, Fenggan
    Li, Xuelong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (12): : 10298 - 10311
  • [18] Boosted band ratio feature selection for hyperspectral image classification
    Fu, Zhouyu
    Caelli, Terry
    Liu, Nianjun
    Robles-Kelly, Antonio
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2006, : 1059 - +
  • [19] Band Selection via Band Density Prominence Clustering for Hyperspectral Image Classification
    Chang, Chein-, I
    Kuo, Yi-Mei
    Ma, Kenneth Yeonkong
    REMOTE SENSING, 2024, 16 (06)
  • [20] A new post-classification and band selection frameworks for hyperspectral image classification
    Medjahed, Seyyid Ahmed
    Saadi, Tamazouzt Ait
    Benyettou, Abdelkader
    Ouali, Mohammed
    EGYPTIAN JOURNAL OF REMOTE SENSING AND SPACE SCIENCES, 2016, 19 (02): : 163 - 173