Small maximal partial t-spreads in PG(2t+1, q)

被引:1
|
作者
De Boeck, Maarten [1 ]
机构
[1] UGent, Dept Math, B-9000 Ghent, Flanders, Belgium
关键词
BLOCKING SETS; SIZE;
D O I
10.1016/j.ejc.2014.10.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A maximal partial t-spread in a projective space is a set oft-spaces which are pairwise disjoint, such that this set is non-extendable with respect to this condition. In this article we prove a lower bound on the size of a maximal partial t-spread in the projective space PG(2t + 1, q) by using the method due to Glynn for t = 1. We also find a lower bound on the size of a maximal partial t-spread containing a small blocking set. (C) 2014 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:47 / 58
页数:12
相关论文
共 50 条
  • [21] The geometry of t-spreads in k-walk-regular graphs
    Dalf´o, C.
    Fiol, M.A.
    Garriga, E.
    Journal of Graph Theory, 2010, 64 (04): : 312 - 322
  • [22] On the Spectrum of the Sizes of Maximal Partial Line Spreads in PG(2n,q), n ≥ 3
    J. Eisfeld
    L. Storme
    P. Sziklai
    Designs, Codes and Cryptography, 2005, 36 : 101 - 110
  • [23] On the spectrum of the sizes of maximal partial line spreads in PG (2n,q),n≥3
    Eisfeld, J
    Storme, L
    Sziklai, P
    DESIGNS CODES AND CRYPTOGRAPHY, 2005, 36 (01) : 101 - 110
  • [24] Subsets of PG(n,2) and maximal partial spreads in PG(4,2)
    Shaw, R
    DESIGNS CODES AND CRYPTOGRAPHY, 2000, 21 (1-3) : 209 - 222
  • [25] Subsets of PG(n,2) and Maximal Partial Spreads in PG(4,2)
    Ron Shaw
    Designs, Codes and Cryptography, 2000, 21 : 209 - 222
  • [26] A New Method to Construct Maximal Partial Spreads of Smallest Size in PG(3, q)
    Iurlo, Maurizio
    Rajola, Sandro
    ERROR-CORRECTING CODES, FINITE GEOMETRIES AND CRYPTOGRAPHY, 2010, 523 : 89 - +
  • [27] Maximal partial spreads in PG(3,5)
    Heden, O
    ARS COMBINATORIA, 2000, 57 : 97 - 101
  • [28] MAXIMAL PARTIAL SPREADS AND TRANSLATION NETS OF SMALL DEFICIENCY
    JUNGNICKEL, D
    JOURNAL OF ALGEBRA, 1984, 90 (01) : 119 - 132
  • [29] Construction and counting of 2t+1 Steiner triple
    Xu, Zhaodi
    Li, Xiaoyi
    Chou, Wanxi
    PROCEEDINGS OF THE 2015 INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND ENGINEERING INNOVATION, 2015, 12 : 263 - 266
  • [30] Minimal Blocking Sets in PG(2, 8) and Maximal Partial Spreads in PG(3, 8)
    J. Barát
    A. Del Fra
    S. Innamorati
    L. Storme
    Designs, Codes and Cryptography, 2004, 31 : 15 - 26