Small maximal partial t-spreads in PG(2t+1, q)

被引:1
|
作者
De Boeck, Maarten [1 ]
机构
[1] UGent, Dept Math, B-9000 Ghent, Flanders, Belgium
关键词
BLOCKING SETS; SIZE;
D O I
10.1016/j.ejc.2014.10.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A maximal partial t-spread in a projective space is a set oft-spaces which are pairwise disjoint, such that this set is non-extendable with respect to this condition. In this article we prove a lower bound on the size of a maximal partial t-spread in the projective space PG(2t + 1, q) by using the method due to Glynn for t = 1. We also find a lower bound on the size of a maximal partial t-spread containing a small blocking set. (C) 2014 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:47 / 58
页数:12
相关论文
共 50 条
  • [1] Partial t-spreads in PG(2t+1,q)
    Metsch, K
    Storme, L
    DESIGNS CODES AND CRYPTOGRAPHY, 1999, 18 (1-3) : 199 - 216
  • [2] Partial t-Spreads in PG(2t+1,q)
    Klaus Metsch
    L. Storme
    Designs, Codes and Cryptography, 1999, 18 : 199 - 216
  • [3] Small maximal partial t-spreads
    Govaerts, P
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2005, 12 (04) : 607 - 615
  • [4] ON T-SPREADS OF PG((S+1)(T+1)-1,Q)
    OKEEFE, CM
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 38 (03) : 473 - 474
  • [5] THE EXISTENCE OF T-SPREADS IN PG(R,Q) OF FIXED TYPE
    EUGENI, F
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1984, 3D (01): : 19 - 43
  • [6] INDICATOR-SETS FOR T-SPREADS OF PG((S+1)(T+1)-1,Q)
    CASSE, LRA
    OKEEFE, CM
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1990, 4B (01): : 13 - 33
  • [7] ON THE TYPE OF PARTIAL T-SPREADS IN FINITE PROJECTIVE SPACES
    BEUTELSPACHER, A
    EUGENI, F
    DISCRETE MATHEMATICS, 1985, 54 (03) : 241 - 257
  • [8] On maximal partial spreads in PG(n,q)
    Gács, A
    Szonyi, T
    DESIGNS CODES AND CRYPTOGRAPHY, 2003, 29 (1-3) : 123 - 129
  • [9] Maximal partial spreads in PG(3,q)
    Rajola, Sandro
    Tallini, Maria Scafati
    JOURNAL OF GEOMETRY, 2006, 85 (1-2) : 138 - 148
  • [10] On Maximal Partial Spreads in PG(n, q)
    András Gács
    Tamás Szőnyi
    Designs, Codes and Cryptography, 2003, 29 : 123 - 129