Spin-Valley Coupling Anisotropy and Noise in CMOS Quantum Dots

被引:5
|
作者
Spence, Cameron [1 ]
Paz, Bruna Cardoso [1 ]
Klemt, Bernhard [1 ]
Chanrion, Emmanuel [1 ]
Niegemann, David J. [1 ]
Jadot, Baptiste [1 ]
Thiney, Vivien [2 ]
Bertrand, Benoit [2 ]
Niebojewski, Heimanu [2 ]
Mortemousque, Pierre-Andre [2 ]
Jehl, Xavier [3 ]
Maurand, Romain [3 ]
De Franceschi, Silvano [3 ]
Vinet, Maud [2 ]
Balestro, Franck [1 ]
Bauerle, Christopher [1 ]
Niquet, Yann-Michel [3 ]
Meunier, Tristan [1 ]
Urdampilleta, Matias [1 ]
机构
[1] Univ Grenoble Alpes, Inst Neel, Grenoble INP, CNRS, F-38402 Grenoble, France
[2] CEA, LETI, Minatec Campus, F-38054 Grenoble, France
[3] Univ Grenoble Alpes, IRIG, CEA, F-38000 Grenoble, France
关键词
SINGLE-SHOT READOUT; GATE;
D O I
10.1103/PhysRevApplied.17.034047
中图分类号
O59 [应用物理学];
学科分类号
摘要
One of the main advantages of silicon spin qubits over other solid-state qubits is their inherent scalability and compatibility with the 300-mm complementary metal oxide semiconductor (CMOS) fabrication technology that is already widely used in the semiconductor industry, while maintaining high readout and gate fidelities. We demonstrate the detection of a single electron spin using energy-selective readout in a CMOS-fabricated nanowire device with an integrated charge detector. We measure a valley splitting of 0.3 meV and 0.16 meV in two similar devices. The anisotropy of the spin-valley mixing is measured and shown to follow the dependence expected from the symmetry of the local confinement, indicating low disorder in the region of the quantum dot. Finally the charge noise in the strong spin-valley coupling regime is investigated and found to induce fluctuations in the qubit energy in the range of 0.6 GHz/ root Hz.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Tunable spin-valley coupling in layered polar Dirac metals
    Kondo, Masaki
    Ochi, Masayuki
    Kojima, Tatsuhiro
    Kurihara, Ryosuke
    Sekine, Daiki
    Matsubara, Masakazu
    Miyake, Atsushi
    Tokunaga, Masashi
    Kuroki, Kazuhiko
    Murakawa, Hiroshi
    Hanasaki, Noriaki
    Sakai, Hideaki
    [J]. COMMUNICATIONS MATERIALS, 2021, 2 (01)
  • [32] Quantum-enhanced tunable spin-valley dependent excitonic second harmonic generation in molybdenum disulfide quantum dots
    Fouladi-Oskouei, J.
    Shojaei, S.
    [J]. MATERIALS RESEARCH EXPRESS, 2019, 6 (12):
  • [33] Extrinsic spin-valley Hall effect and spin-relaxation anisotropy in magnetized and strained graphene
    Zhang, Xian-Peng
    [J]. PHYSICAL REVIEW B, 2022, 106 (11)
  • [34] Electron spin resonance and spin-valley physics in a silicon double quantum dot
    Hao, Xiaojie
    Ruskov, Rusko
    Xiao, Ming
    Tahan, Charles
    Jiang, HongWen
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [35] Coupling Ferroelectricity with Spin-Valley Physics in Oxide-Based Heterostructures
    Yamauchi, Kunihiko
    Barone, Paolo
    Shishidou, Tatsuya
    Oguchi, Tamio
    Picozzi, Silvia
    [J]. PHYSICAL REVIEW LETTERS, 2015, 115 (03)
  • [36] A silicon singlet-triplet qubit driven by spin-valley coupling
    Jock, Ryan M.
    Jacobson, N. Tobias
    Rudolph, Martin
    Ward, Daniel R.
    Carroll, Malcolm S.
    Luhman, Dwight R.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [37] Emergence and stability of spin-valley entangled quantum liquids in moire heterostructures
    Kiese, Dominik
    Buessen, Finn Lasse
    Hickey, Ciaran
    Trebst, Simon
    Scherer, Michael M.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [38] Decoherence of a spin-valley qubit in a MoS2 quantum dot
    Arfaoui, Mehdi
    Jaziri, Sihem
    [J]. JOURNAL OF PHYSICS COMMUNICATIONS, 2022, 6 (11):
  • [39] A scheme to realize the quantum spin-valley Hall effect in monolayer graphene
    Islam, S. K. Firoz
    Benjamin, Colin
    [J]. CARBON, 2016, 110 : 304 - 312
  • [40] Spin-valley coupling and spin-relaxation anisotropy in all-CVD Graphene-MoS2 van der Waals heterostructure
    Hoque, Anamul Md.
    Ramachandra, Vasudev
    George, Antony
    Najafidehaghani, Emad
    Gan, Ziyang
    Mitra, Richa
    Zhao, Bing
    Khokhriakov, Dmitrii
    Turchanin, Andrey
    Lara-Avila, Samuel
    Kubatkin, Sergey
    Dash, Saroj P.
    [J]. PHYSICAL REVIEW MATERIALS, 2023, 7 (04)