Thermodynamic analysis of hybrid liquid air energy storage systems based on cascaded storage and effective utilization of compression heat

被引:51
|
作者
Zhang, Tong [1 ]
Zhang, Xue-Lin [1 ]
He, Ya-Ling [1 ,2 ]
Xue, Xiao-Dai [1 ,3 ]
Mei, Sheng-Wei [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Control & Simulat Power Syst & Gene, Beijing 100084, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermofluid Sci & Engn, Minist Educ, Xian 710049, Shanxi, Peoples R China
[3] Qinghai Univ, Sch QiDi TUS Renewable Energy, Xining 810016, Qinghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Liquid air energy storage; Heat recovery; Organic Rankine cycle; Kalina cycle; Compression heat; ORGANIC RANKINE-CYCLE; KALINA CYCLE; WORKING FLUID; PERFORMANCE; ORC; OPTIMIZATION; COLD; SELECTION; RECOVERY; ENHANCEMENT;
D O I
10.1016/j.applthermaleng.2019.114526
中图分类号
O414.1 [热力学];
学科分类号
摘要
As a promising solution for large-scale energy storage, liquid air energy storage (LAES) has unique advantages of high energy storage density and no geographical constraint. In baseline LAES, the compression heat is surplus because of the low liquefaction ratio, which significantly influences its round-trip efficiency (RTE). In this paper, hybrid LAES systems based on the cascaded storage and effective utilization of compression heat is proposed and analyzed. In order to improve the storage temperature, cascaded-storage of compression heat is proposed. Meanwhile, the organic Rankine cycle (ORC) and Kalina cycle (KC) are considered to utilize the surplus compression heat to generate additional electricity. Based on the same conditions, the performances of the subcritical ORC using dry fluids, supercritical ORC using wet fluids, and KC are calculated and compared. It is found that the cascaded storage of compression heat can significantly increase the storage temperature and further improve the RTE of the system. Moreover, the RTE of the LAES system is increased by 10.9-19.5% owing to the additional power generation. The subcritical ORC using dry fluids is found to be more suitable in utilizing the surplus compression heat for its simple configuration and excellent performance.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Thermodynamic analysis of Liquid Air Energy Storage integrated with a serial system of Organic Rankine and Absorption Refrigeration Cycles driven by compression heat
    Peng, Xiaodong
    She, Xiaohui
    Li, Yongliang
    Ding, Yulong
    PROCEEDINGS OF THE 9TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY, 2017, 142 : 3440 - 3446
  • [22] Thermodynamic analysis of a hybrid system combining compressed air energy storage and pressurized water thermal energy storage
    He, Xin
    Wang, Huanran
    Ge, Gangqiang
    Liu, Yitong
    Zhang, Yufei
    APPLIED THERMAL ENGINEERING, 2023, 229
  • [23] Thermodynamic analysis and optimization of an innovative hybrid multi-generating liquid air energy storage system
    Babaei, Seyed Mostafa
    Nabat, Mohammad Hossein
    Lashgari, Fatemeh
    Pedram, Mona Zamani
    Arabkoohsar, Ahmad
    Journal of Energy Storage, 2021, 43
  • [24] Thermodynamic analysis and optimization of an innovative hybrid multi-generating liquid air energy storage system
    Babaei, Seyed Mostafa
    Nabat, Mohammad Hossein
    Lashgari, Fatemeh
    Pedram, Mona Zamani
    Arabkoohsar, Ahmad
    JOURNAL OF ENERGY STORAGE, 2021, 43
  • [25] Flow and heat transfer characteristics of air compression in a liquid piston for compressed air energy storage
    Gouda, El Mehdi
    Benaouicha, Mustapha
    Neu, Thibault
    Fan, Yilin
    Luo, Lingai
    ENERGY, 2022, 254
  • [26] Thermodynamic performance of cascaded latent heat storage systems for building heating
    Lu, Shilei
    Lin, Quanyi
    Xu, Bowen
    Yue, Lu
    Feng, Wei
    ENERGY, 2023, 282
  • [27] Thermodynamic analysis of the compressed-air energy storage systems operation
    Skorek, J
    Banasiak, K
    INZYNIERIA CHEMICZNA I PROCESOWA, 2006, 27 (01): : 187 - 200
  • [28] Thermodynamic study on the effect of cold and heat recovery on performance of liquid air energy storage
    Peng, Xiaodong
    She, Xiaohui
    Cong, Lin
    Zhang, Tongtong
    Li, Chuan
    Li, Yongliang
    Wang, Li
    Tong, Lige
    Ding, Yulong
    APPLIED ENERGY, 2018, 221 : 86 - 99
  • [29] Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy
    Zhang, Chengbin
    Li, Deming
    Mao, Changjun
    Liu, Haiyang
    Chen, Yongping
    ENERGY, 2024, 299
  • [30] Thermodynamic analysis of heat transfer in a wellbore combining compressed air energy storage
    Yi Li
    Keni Zhang
    Litang Hu
    Jinsheng Wang
    Environmental Earth Sciences, 2017, 76