Rayleigh laser guide stars for extremely large telescopes

被引:1
|
作者
Thompson, LA [1 ]
机构
[1] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
关键词
lasers; telescopes; laser guide stars; adaptive optics;
D O I
10.1117/12.459066
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
Rayleigh laser guide star technology is discussed here with particular attention paid to the effects of laser pulse length, a parameter that becomes more significant to the design when telescope apertures are greater than 10 meters. After reviewing the relative return signal for Rayleigh versus sodium laser guide stars, a brief review of the pulse length characteristics of sodium lasers is given. Two sodium laser systems are pulsed in a way that will make them useful for Extremely Large Telescopes (ELTs). To insure star-like sources at the wavefront sensor with FWHM < 1.0 arcsec, Rayleigh lasers must have short pulse formats when used with the largest ELTs. A relatively simple Rayleigh laser guide star method is described for Ground Layer Adaptive Optics (GLAO). This method provides a way to average out the effects of high altitude turbulence with a single Rayleigh laser guide star while leaving intact the wavefront signal needed to correct ground-layer wavefront perturbations.
引用
收藏
页码:1175 / 1181
页数:7
相关论文
共 50 条
  • [21] Adaptive optics and extremely large telescopes
    Fusco, Thierry
    [J]. COMPTES RENDUS MECANIQUE, 2023, 351 : 81 - 89
  • [22] Distant galaxies and extremely large telescopes
    Bremer, M. N.
    Lehmert, M. D.
    [J]. EXPLORING THE COSMIC FRONTIER: ASTROPHYSICAL INSTRUMENTS FOR THE 21ST CENTURY, 2007, : 125 - +
  • [23] Maintenance concept for the Extremely Large Telescopes
    Ortega, Marcos Antonio
    Hardie, Kayla
    Gajadhar, Sarah
    Goodrich, Robert W.
    [J]. JOURNAL OF ASTRONOMICAL TELESCOPES INSTRUMENTS AND SYSTEMS, 2022, 8 (02)
  • [24] A fixed plate to remove spherical aberration in Rayleigh laser guide stars
    Ragazzoni, R
    Tordi, M
    Diolaiti, E
    [J]. OPTICS COMMUNICATIONS, 2001, 194 (4-6) : 243 - 250
  • [25] Cophasing techniques for extremely large telescopes
    Devaney, N
    Schumacher, A
    [J]. SECOND BACKASKOG WORKSHOP ON EXTREMELY LARGE TELESCOPES, PTS 1 AND 2, 2003, 5382 : 431 - 439
  • [26] Adaptive optics with solely natural guide stars for an Extremely Large Telescope
    Ragazzoni, R.
    Arcidiacono, C.
    Dima, M.
    Farinato, J.
    Magrin, D.
    Viotto, V.
    [J]. ADAPTIVE OPTICS SYSTEMS II, 2010, 7736
  • [27] Control challenges for extremely large telescopes
    MacMartin, DG
    [J]. SMART STRUCTURES AND MATERIALS 2003: INDUSTRIAL AND COMMERCIAL APPLICATIONS OF SMART STRUCTURES TECHNOLOGIES, 2003, 5054 : 275 - 286
  • [28] Estimating the costs of extremely large telescopes
    Stepp, L
    Daggert, L
    Gillett, P
    [J]. FUTURE GIANT TELESCOPES, 2003, 4840 : 309 - 321
  • [29] Adaptive Optics for Extremely Large Telescopes
    Hippler, Stefan
    [J]. JOURNAL OF ASTRONOMICAL INSTRUMENTATION, 2019, 8 (02)
  • [30] Asteroid Confusions with Extremely Large Telescopes
    Gyula M. Szabó
    Attila E. Simon
    [J]. Earth, Moon, and Planets, 2009, 105 : 227 - 234