A note on the finite element method for the space-fractional advection diffusion equation

被引:145
|
作者
Zheng, Yunying [1 ,2 ]
Li, Changpin [1 ]
Zhao, Zhengang [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Huainan Normal Univ, Dept Math, Huainan, Peoples R China
关键词
Space-fractional partial differential equation; Caputo derivative; Finite element method; EVOLUTION;
D O I
10.1016/j.camwa.2009.08.071
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a note on the finite element method for the space-fractional advection diffusion equation with non-homogeneous initial-boundary condition is given, where the fractional derivative is in the sense of Caputo. The error estimate is derived, and the numerical results presented support the theoretical results. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1718 / 1726
页数:9
相关论文
共 50 条
  • [1] On the effective method for the space-fractional advection-diffusion equation by the Galerkin method
    Bin Jebreen, Haifa
    Wang, Hongzhou
    [J]. AIMS MATHEMATICS, 2024, 9 (09): : 24143 - 24162
  • [2] An enriched finite element method to fractional advection–diffusion equation
    Shengzhi Luan
    Yanping Lian
    Yuping Ying
    Shaoqiang Tang
    Gregory J. Wagner
    Wing Kam Liu
    [J]. Computational Mechanics, 2017, 60 : 181 - 201
  • [3] The finite volume element method for the two-dimensional space-fractional convection–diffusion equation
    Yanan Bi
    Ziwen Jiang
    [J]. Advances in Difference Equations, 2021
  • [4] Finite element method for a space-fractional anti-diffusive equation
    Bouharguane, Afaf
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 328 : 497 - 507
  • [5] An enriched finite element method to fractional advection-diffusion equation
    Luan, Shengzhi
    Lian, Yanping
    Ying, Yuping
    Tang, Shaoqiang
    Wagner, Gregory J.
    Liu, Wing Kam
    [J]. COMPUTATIONAL MECHANICS, 2017, 60 (02) : 181 - 201
  • [6] ERROR ANALYSIS OF A FINITE ELEMENT METHOD FOR THE SPACE-FRACTIONAL PARABOLIC EQUATION
    Jin, Bangti
    Lazarov, Raytcho
    Pasciak, Joseph
    Zhou, Zhi
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (05) : 2272 - 2294
  • [7] The finite volume element method for the two-dimensional space-fractional convection-diffusion equation
    Bi, Yanan
    Jiang, Ziwen
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
  • [8] A PRECONDITIONED FAST HERMITE FINITE ELEMENT METHOD FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Zhao, Meng
    Cheng, Aijie
    Wang, Hong
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (09): : 3529 - 3545
  • [9] Finite element method for two-dimensional space-fractional advection-dispersion equations
    Zhao, Yanmin
    Bu, Weiping
    Huang, Jianfei
    Liu, Da-Yan
    Tang, Yifa
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 553 - 565
  • [10] Numerical solutions of space-fractional advection-diffusion equation with a source term
    Jannelli, Alessandra
    Ruggieri, Marianna
    Speciale, Maria Paola
    [J]. INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM-2018), 2019, 2116