Augmented Lagrangian algorithms based on the spectral projected gradient method for solving nonlinear programming problems

被引:20
|
作者
Diniz-Ehrhardt, MA [1 ]
Gomes-Ruggiero, MA [1 ]
Martínez, JM [1 ]
Santos, SA [1 ]
机构
[1] Univ Estadual Campinas, IMECC, Campinas, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
augmented Lagrangian methods; projected gradient methods; nonmonotone line search; large-scale problems; bound-constrained problems; Barzilai-Borwein method;
D O I
10.1007/s10957-004-5720-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The spectral projected gradient method (SPG) is an algorithm for large-scale bound-constrained optimization introduced recently by Birgin, Martinez, and Raydan. It is based on the Raydan unconstrained generalization of the Barzilai-Borwein method for quadratics. The SPG algorithm turned out to be surprisingly effective for solving many large-scale minimization problems with box constraints. Therefore, it is natural to test its perfomance for solving the subproblems that appear in nonlinear programming methods based on augmented Lagrangians. In this work, augmented Lagrangian methods which use SPG as the underlying convex-constraint solver are introduced (ALSPG) and the methods are tested in two sets of problems. First, a meaningful subset of large-scale nonlinearly constrained problems of the CUTE collection is solved and compared with the perfomance of LANCELOT. Second, a family of location problems in the minimax formulation is solved against the package FFSQP.
引用
收藏
页码:497 / 517
页数:21
相关论文
共 50 条