The Tresse theorem and differential invariants for the nonlinear Schrodinger equation

被引:1
|
作者
Czyzycki, T. [1 ]
机构
[1] Univ Bialystok, Inst Math, Bialystok, Poland
关键词
D O I
10.1088/1751-8113/40/31/011
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present paper by using the Tresse theorem we describe a method of construction of all invariants and the differential invariants for a given Lie group, which means invariants containing derivatives of any order. Some important examples from analysis, geometry and physics are presented. In particular, invariants for the nonlinear Schrodinger equation will be investigated.
引用
收藏
页码:9331 / 9342
页数:12
相关论文
共 50 条
  • [1] Equivalence transformations and differential invariants of a generalized nonlinear Schrodinger equation
    Senthilvelan, M
    Torrisi, M
    Valenti, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (14): : 3703 - 3713
  • [2] KAM theorem for the nonlinear Schrodinger equation
    Grébert, B
    Kappeler, T
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2001, 8 : 133 - 138
  • [3] KAM theorem for the nonlinear Schrodinger equation
    Grebert, B
    Kappeler, T
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (05): : 473 - 478
  • [4] Equivalence transformations and differential invariants of a generalized cubic-quintic nonlinear Schrodinger equation with variable coefficients
    Li, Ruijuan
    Yong, Xuelin
    Chen, Yuning
    Huang, Yehui
    NONLINEAR DYNAMICS, 2020, 102 (01) : 339 - 348
  • [5] A BOUNDEDNESS THEOREM FOR A NONLINEAR DIFFERENTIAL EQUATION
    ANTOSIEWICZ, HA
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 59 (04) : 344 - 345
  • [6] A Nekhoroshev type theorem for the derivative nonlinear Schrodinger equation
    Cong, Hongzi
    Mi, Lufang
    Wang, Peizhen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 5207 - 5256
  • [7] DIFFERENTIAL GEOMETRIC ASPECTS OF NONLINEAR SCHRODINGER EQUATION
    Erdogdu, Melek
    Yavuz, Ayse
    COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2021, 70 (01): : 510 - 521
  • [8] A differential quadrature algorithm for nonlinear Schrodinger equation
    Korkmaz, Alper
    Dag, Idris
    NONLINEAR DYNAMICS, 2009, 56 (1-2) : 69 - 83
  • [9] INVARIANTS OF NONLINEAR DIFFERENTIAL EQUATION OF THIRD-ORDER
    BANDIC, I
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (01): : 77 - &
  • [10] A NEKHOROSHEV-TYPE THEOREM FOR THE NONLINEAR SCHRODINGER EQUATION ON THE TORUS
    Faou, Erwan
    Grebert, Benoit
    ANALYSIS & PDE, 2013, 6 (06): : 1243 - 1262