A NEKHOROSHEV-TYPE THEOREM FOR THE NONLINEAR SCHRODINGER EQUATION ON THE TORUS

被引:51
|
作者
Faou, Erwan [1 ,2 ]
Grebert, Benoit [3 ]
机构
[1] INRIA, F-35170 Bruz, France
[2] ENS Cachan Bretagne, F-35170 Bruz, France
[3] Univ Nantes, Lab Math Jean Leray, F-44322 Nantes 3, France
来源
ANALYSIS & PDE | 2013年 / 6卷 / 06期
关键词
Nekhoroshev theorem; nonlinear Schrodinger equation; normal forms; BIRKHOFF NORMAL-FORM; HAMILTONIAN-SYSTEMS; STABILITY; PDES;
D O I
10.2140/apde.2013.6.1243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Nekhoroshev type theorem for the nonlinear Schrodinger equation iu(t) = -Delta u + V star u + partial derivative((u) over barg)(u,(u) over bar), x is an element of T-d, where V is a typical smooth Fourier multiplier and g is analytic in both variables. More precisely, we prove that if the initial datum is analytic in a strip of width rho > 0 whose norm on this strip is equal to epsilon, then if epsilon is small enough, the solution of the nonlinear Schrodinger equation above remains analytic in a strip of width rho/2, with norm bounded on this strip by C epsilon over a very long time interval of order epsilon(-sigma)|ln epsilon|(beta), where 0 < beta < 1 is arbitrary and C > 0 and sigma > 0 are positive constants depending on beta and rho.
引用
收藏
页码:1243 / 1262
页数:20
相关论文
共 50 条
  • [1] A Nekhoroshev-type theorem for the nonlinear Schrodinger equations on the d-dimensional torus
    Yang, Xue
    APPLICABLE ANALYSIS, 2024,
  • [2] A NEKHOROSHEV TYPE THEOREM FOR NONLINEAR SCHRODINGER EQUATION ON THE d-DIMENSIONAL TORUS
    Zhao, Juan
    HOUSTON JOURNAL OF MATHEMATICS, 2023, 49 (04): : 899 - 919
  • [3] A Nekhoroshev type theorem for the nonlinear wave equation on the torus
    Mi, Lufang
    Liu, Chunyong
    Shi, Guanghua
    Zhao, Rong
    PURE AND APPLIED MATHEMATICS QUARTERLY, 2020, 16 (05) : 1763 - 1789
  • [4] A Nekhoroshev type theorem for the derivative nonlinear Schrodinger equation
    Cong, Hongzi
    Mi, Lufang
    Wang, Peizhen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (09) : 5207 - 5256
  • [5] A Nekhoroshev type theorem for the nonlinear wave equation
    Cong, Hongzi
    Liu, Chunyong
    Wang, Peizhen
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (04) : 3853 - 3889
  • [6] A Nekhoroshev Type Theorem of Higher Dimensional Nonlinear Schrodinger Equations
    Zhou, Shidi
    Geng, Jiansheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2017, 21 (05): : 1115 - 1132
  • [7] A Nekhoroshev Type Theorem for the Nonlinear Wave Equation in Gevrey Space
    Chunyong LIU
    Huayong LIU
    Rong ZHAO
    ChineseAnnalsofMathematics,SeriesB, 2019, (03) : 389 - 410
  • [8] A NEKHOROSHEV-TYPE THEOREM FOR THE PAULI-FIERZ MODEL OF CLASSICAL ELECTRODYNAMICS
    BAMBUSI, D
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1994, 60 (03): : 339 - 371
  • [9] A Nekhoroshev Type Theorem for the Nonlinear Wave Equation in Gevrey Space
    Liu, Chunyong
    Liu, Huayong
    Zhao, Rong
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2019, 40 (03) : 389 - 410
  • [10] A Nekhoroshev Type Theorem for the Nonlinear Wave Equation in Gevrey Space
    Chunyong Liu
    Huayong Liu
    Rong Zhao
    Chinese Annals of Mathematics, Series B, 2019, 40 : 389 - 410