A NEKHOROSHEV-TYPE THEOREM FOR THE NONLINEAR SCHRODINGER EQUATION ON THE TORUS

被引:51
|
作者
Faou, Erwan [1 ,2 ]
Grebert, Benoit [3 ]
机构
[1] INRIA, F-35170 Bruz, France
[2] ENS Cachan Bretagne, F-35170 Bruz, France
[3] Univ Nantes, Lab Math Jean Leray, F-44322 Nantes 3, France
来源
ANALYSIS & PDE | 2013年 / 6卷 / 06期
关键词
Nekhoroshev theorem; nonlinear Schrodinger equation; normal forms; BIRKHOFF NORMAL-FORM; HAMILTONIAN-SYSTEMS; STABILITY; PDES;
D O I
10.2140/apde.2013.6.1243
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove a Nekhoroshev type theorem for the nonlinear Schrodinger equation iu(t) = -Delta u + V star u + partial derivative((u) over barg)(u,(u) over bar), x is an element of T-d, where V is a typical smooth Fourier multiplier and g is analytic in both variables. More precisely, we prove that if the initial datum is analytic in a strip of width rho > 0 whose norm on this strip is equal to epsilon, then if epsilon is small enough, the solution of the nonlinear Schrodinger equation above remains analytic in a strip of width rho/2, with norm bounded on this strip by C epsilon over a very long time interval of order epsilon(-sigma)|ln epsilon|(beta), where 0 < beta < 1 is arbitrary and C > 0 and sigma > 0 are positive constants depending on beta and rho.
引用
收藏
页码:1243 / 1262
页数:20
相关论文
共 50 条
  • [31] SOLUTIONS IN SPECTRAL GAPS FOR A NONLINEAR EQUATION OF SCHRODINGER TYPE
    JEANJEAN, L
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 112 (01) : 53 - 80
  • [32] New type of solutions for the nonlinear Schrodinger equation in RN
    Duan, Lipeng
    Musso, Monica
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2022, 336 : 479 - 504
  • [33] Explicit Solutions of the Nonlinear Schrodinger-Type Equation
    Syzdykova, Arailym
    Kudaibergenov, Gaziz
    NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES, NTADES 2023, 2024, 449 : 179 - 187
  • [34] A nonlinear Gibbs-type phenomenon for the defocusing nonlinear Schrodinger equation
    DiFranco, JC
    McLaughlin, KTR
    INTERNATIONAL MATHEMATICS RESEARCH PAPERS, 2005, (08): : 403 - 459
  • [35] The Schrodinger equation on cylinders and the n-torus
    Krausshar, R. S.
    Vieira, N.
    JOURNAL OF EVOLUTION EQUATIONS, 2011, 11 (01) : 215 - 237
  • [36] NONLINEAR SCHRODINGER EQUATION
    BAILLON, JB
    CAZENAVE, T
    FIGUEIRA, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (15): : 869 - 872
  • [37] NONLINEAR SCHRODINGER EQUATION
    BIROLI, M
    ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1973, 54 (06): : 854 - 859
  • [38] A uniqueness theorem and reconstruction of singularities for a two-dimensional nonlinear Schrodinger equation
    Serov, V.
    Harju, M.
    NONLINEARITY, 2008, 21 (06) : 1323 - 1337
  • [39] Nonlinear Schrodinger-Helmholtz equation as numerical regularization of the nonlinear Schrodinger equation
    Cao, Yanping
    Musslimani, Ziad H.
    Titi, Edriss S.
    NONLINEARITY, 2008, 21 (05) : 879 - 898
  • [40] Nekhoroshev theorem for small amplitude solutions in nonlinear Schrödinger equations
    Dario Bambusi
    Mathematische Zeitschrift, 1999, 230 : 345 - 387