A biased random-key genetic algorithm for the maximum quasi-clique problem

被引:32
|
作者
Pinto, Bruno Q. [1 ,2 ]
Ribeiro, Celso C. [2 ]
Rosseti, Isabel [2 ]
Plastino, Alexandre [2 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Triangulo Mineiro, BR-38411104 Uberlandia, MG, Brazil
[2] Univ Fed Fluminense, Inst Comp, BR-24210240 Niteroi, RJ, Brazil
关键词
Metaheuristics; Biased random-key genetic algorithm; Maximum quasi-clique problem; Maximum clique problem; Graph density; PATH-RELINKING; GRASP; TIME;
D O I
10.1016/j.ejor.2018.05.071
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G = (V, E) and a threshold gamma is an element of (0, 1 j, the maximum cardinality quasi-clique problem consists in finding a maximum cardinality subset C. of the vertices in V such that the density of the graph induced in G by C* is greater than or equal to the threshold gamma. This problem is NP-hard, since it admits the maximum clique problem as a special case. It has a number of applications in data mining, e.g. in social networks or phone call graphs. In this work, we propose a biased random-key genetic algorithm for solving the maximum cardinality quasi-clique problem. Two alternative decoders are implemented for the biased random-key genetic algorithm and the corresponding algorithm variants are evaluated. Computational results show that the newly proposed approaches improve upon other existing heuristics for this problem in the literature. All input data for the test instances and all detailed numerical results are available from Mendeley. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:849 / 865
页数:17
相关论文
共 50 条
  • [21] An adaptive biased random-key genetic algorithm for the tactical berth allocation problem
    Chaves, Antonio A.
    Oliveira, Rudinei M.
    Goncalves, Jose F.
    Lorena, Luiz A. N.
    39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024, 2024, : 378 - 385
  • [22] A biased random-key genetic algorithm for the capacitated minimum spanning tree problem
    Ruiz, Efrain
    Albareda-Sambola, Maria
    Fernandez, Elena
    Resende, Mauricio G. C.
    COMPUTERS & OPERATIONS RESEARCH, 2015, 57 : 95 - 108
  • [23] A biased random-key genetic algorithm for the rescue unit allocation and scheduling problem
    Cunha, Victor
    Pessoa, Luciana
    Vellasco, Marley
    Tanscheit, Ricardo
    Pacheco, Marco Aurelio
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 1439 - 1444
  • [24] A biased random-key genetic algorithm for the project scheduling problem with flexible resources
    Bernardo F. Almeida
    Isabel Correia
    Francisco Saldanha-da-Gama
    TOP, 2018, 26 : 283 - 308
  • [25] A Biased Random-Key Genetic Algorithm for Bandwidth Reduction
    Silva, P. H. G.
    Brandao, D. N.
    Morais, I. S.
    Gonzaga de Oliveira, S. L.
    COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2020, PT I, 2020, 12249 : 312 - 321
  • [26] A biased random-key genetic algorithm for data clustering
    Festa, P.
    MATHEMATICAL BIOSCIENCES, 2013, 245 (01) : 76 - 85
  • [27] A biased random-key genetic algorithm for the project scheduling problem with flexible resources
    Almeida, Bernardo F.
    Correia, Isabel
    Saldanha-da-Gama, Francisco
    TOP, 2018, 26 (02) : 283 - 308
  • [28] A biased random-key genetic algorithm for routing and wavelength assignment
    Noronha, Thiago F.
    Resende, Mauricio G. C.
    Ribeiro, Celso C.
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 50 (03) : 503 - 518
  • [29] An optimization algorithm for maximum quasi-clique problem based on information feedback model
    Liu, Shuhong
    Zhou, Jincheng
    Wang, Dan
    Zhang, Zaijun
    Lei, Mingjie
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [30] A biased random-key genetic algorithm for routing and wavelength assignment
    Thiago F. Noronha
    Mauricio G. C. Resende
    Celso C. Ribeiro
    Journal of Global Optimization, 2011, 50 : 503 - 518