A biased random-key genetic algorithm for the maximum quasi-clique problem

被引:32
|
作者
Pinto, Bruno Q. [1 ,2 ]
Ribeiro, Celso C. [2 ]
Rosseti, Isabel [2 ]
Plastino, Alexandre [2 ]
机构
[1] Inst Fed Educ Ciencia & Tecnol Triangulo Mineiro, BR-38411104 Uberlandia, MG, Brazil
[2] Univ Fed Fluminense, Inst Comp, BR-24210240 Niteroi, RJ, Brazil
关键词
Metaheuristics; Biased random-key genetic algorithm; Maximum quasi-clique problem; Maximum clique problem; Graph density; PATH-RELINKING; GRASP; TIME;
D O I
10.1016/j.ejor.2018.05.071
中图分类号
C93 [管理学];
学科分类号
12 ; 1201 ; 1202 ; 120202 ;
摘要
Given a graph G = (V, E) and a threshold gamma is an element of (0, 1 j, the maximum cardinality quasi-clique problem consists in finding a maximum cardinality subset C. of the vertices in V such that the density of the graph induced in G by C* is greater than or equal to the threshold gamma. This problem is NP-hard, since it admits the maximum clique problem as a special case. It has a number of applications in data mining, e.g. in social networks or phone call graphs. In this work, we propose a biased random-key genetic algorithm for solving the maximum cardinality quasi-clique problem. Two alternative decoders are implemented for the biased random-key genetic algorithm and the corresponding algorithm variants are evaluated. Computational results show that the newly proposed approaches improve upon other existing heuristics for this problem in the literature. All input data for the test instances and all detailed numerical results are available from Mendeley. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:849 / 865
页数:17
相关论文
共 50 条
  • [1] A biased random-key genetic algorithm for the minimum quasi-clique partitioning problem
    Melo, Rafael A.
    Ribeiro, Celso C.
    Riveaux, Jose A.
    ANNALS OF OPERATIONS RESEARCH, 2023,
  • [2] An exact algorithm for the maximum quasi-clique problem
    Ribeiro, Celso C.
    Riveaux, Jose A.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2019, 26 (06) : 2199 - 2229
  • [3] On the maximum quasi-clique problem
    Pattillo, Jeffrey
    Veremyey, Alexander
    Butenko, Sergiy
    Boginski, Vladimir
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (1-2) : 244 - 257
  • [4] Biased Random-Key Genetic Algorithm with Local Search Applied to the Maximum Diversity Problem
    Silva, Geiza
    Leite, Andre
    Ospina, Raydonal
    Leiva, Victor
    Figueroa-Zuniga, Jorge
    Castro, Cecilia
    MATHEMATICS, 2023, 11 (14)
  • [5] A biased random-key genetic algorithm for the set orienteering problem
    Carrabs, Francesco
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 292 (03) : 830 - 854
  • [6] A biased random-key genetic algorithm for the chordal completion problem
    Silva, Samuel E.
    Ribeiro, Celso C.
    Souza, Ueverton dos Santos
    RAIRO-OPERATIONS RESEARCH, 2023, 57 (03) : 1559 - 1578
  • [7] A biased random-key genetic algorithm for the Steiner triple covering problem
    Resende, Mauricio G. C.
    Toso, Rodrigo F.
    Goncalves, Jose Fernando
    Silva, Ricardo M. A.
    OPTIMIZATION LETTERS, 2012, 6 (04) : 605 - 619
  • [8] A biased random-key genetic algorithm for the home health care problem
    Kummer, Alberto F.
    de Araujo, Olinto C. B.
    Buriol, Luciana S.
    Resende, Mauricio G. C.
    INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2024, 31 (03) : 1859 - 1889
  • [9] A biased random-key genetic algorithm for the Steiner triple covering problem
    Mauricio G. C. Resende
    Rodrigo F. Toso
    José Fernando Gonçalves
    Ricardo M. A. Silva
    Optimization Letters, 2012, 6 : 605 - 619
  • [10] A Biased Random-Key Genetic Algorithm for the Cloud Resource Management Problem
    Heilig, Leonard
    Lalla-Ruiz, Eduardo
    Voss, Stefan
    EVOLUTIONARY COMPUTATION IN COMBINATORIAL OPTIMIZATION, EVOCOP 2015, 2015, 9026 : 1 - 12