Precise minimax redundancy and regret

被引:67
|
作者
Drmota, M [1 ]
Szpankowski, W
机构
[1] Vienna Univ Technol, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
[2] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
analytic information theory; average minimax redundancy; generalized Shannon code; maximum-likelihood distribution; minimax and maxmin regrets; sequences mod 1; universal modeling; universal noiseless coding; worst case minimax redundancy;
D O I
10.1109/TIT.2004.836702
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent years have seen a resurgence of interest in redundancy of lossless coding. The redundancy (regret) of universal fixed-to-variable length coding for a class of sources determines by how much the actual code length exceeds the optimal ideal over the class) code length. In a minimax scenario one finds the best code for the worst source either in the worst case (called also maximal minimax) or on average. We first study the worst case minimax redundancy over a class of stationary ergodic sources and replace Shtarkov's bound by an exact formula. Among others, we prove that a generalized Shannon code minimizes the worst case redundancy, derive asymptotically its redundancy, and establish,some general properties. This allows us to obtain precise redundancy for memoryless, Markov, and renewal sources. For example, we present the exact constant of the redundancy for memoryless and Markov sources by showing that the integer nature of coding contributes log(log m/(m - 1))/ log m + o(1) where m is the size of the alphabet. Then we deal with the average minimax redundancy and regret. Our approach here is orthogonal to most recent research in this area since we aspire to show that asymptotically the average minimax redundancy is equivalent to the worst case minimax redundancy for some classes of sources. After formulating some general bounds relating these two redundancies, we prove our assertion for memoryless and Markov sources. Nevertheless, we provide evidence that maximal redundancy of renewal processes does not have the same leading term as the average minimax redundancy (however, our general results show that maximal and average regrets are asymptotically equivalent).
引用
收藏
页码:2686 / 2707
页数:22
相关论文
共 50 条
  • [21] Possibilistic Preference Elicitation by Minimax Regret
    Adam, Loic
    Destercke, Sebastien
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, VOL 161, 2021, 161 : 718 - 727
  • [22] Minimax regret estimation in linear models
    Eldar, YC
    Ben-Tal, A
    Nemirovski, A
    2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL II, PROCEEDINGS: SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING SIGNAL PROCESSING THEORY AND METHODS, 2004, : 161 - 164
  • [23] Existence and stability of minimax regret equilibria
    Zhe Yang
    Yong Jian Pu
    Journal of Global Optimization, 2012, 54 : 17 - 26
  • [24] Minimax regret priors for efficiency estimation
    Tsionas, Mike G.
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2023, 309 (03) : 1279 - 1285
  • [25] Intertemporal Pricing Under Minimax Regret
    Caldentey, Rene
    Liu, Ying
    Lobel, Ilan
    OPERATIONS RESEARCH, 2017, 65 (01) : 104 - 129
  • [26] Minimax Regret Path Location on Trees
    Puerto, Justo
    Ricca, Federica
    Scozzari, Andrea
    NETWORKS, 2011, 58 (02) : 147 - 158
  • [27] Axioms for minimax regret choice correspondences
    Stoye, Joerg
    JOURNAL OF ECONOMIC THEORY, 2011, 146 (06) : 2226 - 2251
  • [28] Minimax Regret for Stochastic Shortest Path
    Cohen, Alon
    Efroni, Yonathan
    Mansour, Yishay
    Rosenberg, Aviv
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [29] Revenue management with minimax regret negotiations
    Ayvaz-Cavdaroglu, Nur
    Kachani, Soulaymane
    Maglaras, Costis
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2016, 63 : 12 - 22
  • [30] Minimax Regret for Partial Monitoring: Infinite Outcomes and Rustichini's Regret
    Lattimore, Tor
    CONFERENCE ON LEARNING THEORY, VOL 178, 2022, 178