Precise minimax redundancy and regret

被引:67
|
作者
Drmota, M [1 ]
Szpankowski, W
机构
[1] Vienna Univ Technol, Inst Diskrete Math & Geometrie, A-1040 Vienna, Austria
[2] Purdue Univ, Dept Comp Sci, W Lafayette, IN 47907 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
analytic information theory; average minimax redundancy; generalized Shannon code; maximum-likelihood distribution; minimax and maxmin regrets; sequences mod 1; universal modeling; universal noiseless coding; worst case minimax redundancy;
D O I
10.1109/TIT.2004.836702
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent years have seen a resurgence of interest in redundancy of lossless coding. The redundancy (regret) of universal fixed-to-variable length coding for a class of sources determines by how much the actual code length exceeds the optimal ideal over the class) code length. In a minimax scenario one finds the best code for the worst source either in the worst case (called also maximal minimax) or on average. We first study the worst case minimax redundancy over a class of stationary ergodic sources and replace Shtarkov's bound by an exact formula. Among others, we prove that a generalized Shannon code minimizes the worst case redundancy, derive asymptotically its redundancy, and establish,some general properties. This allows us to obtain precise redundancy for memoryless, Markov, and renewal sources. For example, we present the exact constant of the redundancy for memoryless and Markov sources by showing that the integer nature of coding contributes log(log m/(m - 1))/ log m + o(1) where m is the size of the alphabet. Then we deal with the average minimax redundancy and regret. Our approach here is orthogonal to most recent research in this area since we aspire to show that asymptotically the average minimax redundancy is equivalent to the worst case minimax redundancy for some classes of sources. After formulating some general bounds relating these two redundancies, we prove our assertion for memoryless and Markov sources. Nevertheless, we provide evidence that maximal redundancy of renewal processes does not have the same leading term as the average minimax redundancy (however, our general results show that maximal and average regrets are asymptotically equivalent).
引用
收藏
页码:2686 / 2707
页数:22
相关论文
共 50 条
  • [1] The precise minimax redundancy
    Drmota, M
    Szpankowski, W
    ISIT: 2002 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2002, : 35 - 35
  • [2] Precise minimax redundancy for Markov sources
    Jacquet, P
    Szpankowski, W
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 78 - 78
  • [3] Precise Minimax Regret for Logistic Regression with Categorical Feature Values
    Jacquet, Philippe
    Shamir, Gil I.
    Szpankowski, Wojciech
    ALGORITHMIC LEARNING THEORY, VOL 132, 2021, 132
  • [4] PARADOX OF MINIMAX REGRET
    BECK, N
    AMERICAN POLITICAL SCIENCE REVIEW, 1975, 69 (03) : 918 - 918
  • [5] Minimax regret discounting
    Iverson, Terrence
    JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT, 2013, 66 (03) : 598 - 608
  • [6] Empirical entropy, minimax regret and minimax risk
    Rakhlin, Alexander
    Sridharan, Karthik
    Tsybakov, Alexandre B.
    BERNOULLI, 2017, 23 (02) : 789 - 824
  • [7] A combinatorial problem arising in information theory: Precise minimax redundancy for Markov sources
    Jacquet, P
    Szpankowski, W
    MATHEMATICS AND COMPUTER SCIENCE II: ALGORITHMS, TREES, COMBINATORICS AND PROBABILITIES, 2002, : 311 - 328
  • [8] Minimax Renyi Redundancy
    Yagli, Semih
    Altug, Yucel
    Verdu, Sergio
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (05) : 3715 - 3733
  • [9] Minimax Regret for Cascading Bandits
    Vial, Daniel
    Sanghavi, Sujay
    Shakkottai, Sanjay
    Srikant, R.
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [10] Minimax regret and strategic uncertainty
    Renou, Ludovic
    Schlag, Karl H.
    JOURNAL OF ECONOMIC THEORY, 2010, 145 (01) : 264 - 286