A PARALLEL DIRECTIONAL FAST MULTIPOLE METHOD

被引:10
|
作者
Benson, Austin R. [1 ]
Poulson, Jack [2 ]
Tran, Kenneth [3 ]
Engquist, Bjoern [4 ,5 ]
Ying, Lexing [1 ,2 ]
机构
[1] Stanford Univ, ICME, Stanford, CA 94305 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
[3] Microsoft Corp, Redmond, WA 98052 USA
[4] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
[5] Univ Texas Austin, ICES, Austin, TX 78712 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2014年 / 36卷 / 04期
基金
美国国家科学基金会;
关键词
parallel; fast multipole methods; N-body problems; scattering problems; Helmholtz equation; oscillatory kernels; directional; multilevel; ELECTROMAGNETIC SCATTERING; COLLECTIVE COMMUNICATION; INTEGRAL-EQUATIONS; ALGORITHM;
D O I
10.1137/130945569
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a parallel directional fast multipole method (FMM) for solving N-body problems with highly oscillatory kernels, with a focus on the Helmholtz kernel in three dimensions. This class of oscillatory kernels requires a more restrictive low-rank criterion than that of the low-frequency regime, and thus effective parallelizations must adapt to the modified data dependencies. We propose a simple partition at a fixed level of the octree and show that, if the partitions are properly balanced between p processes, the overall runtime is essentially O N log N/p + p. By the structure of the low-rank criterion, we are able to avoid communication at the top of the octree. We demonstrate the effectiveness of our parallelization on several challenging models.
引用
收藏
页码:C335 / C352
页数:18
相关论文
共 50 条
  • [21] Multipole Ewald sums for the fast multipole method
    K. E. Schmidt
    Michael A. Lee
    [J]. Journal of Statistical Physics, 1997, 89 : 411 - 424
  • [22] Multipole Ewald sums for the fast multipole method
    Schmidt, KE
    Lee, MA
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1997, 89 (1-2) : 411 - 424
  • [23] The Parallel Algorithm of Fast Multipole Expansion Method for Electric Field Integral Equation
    He, Jiayu
    Chen, Feiran
    Yu, Xinglu
    Cheng, Taige
    Xiao, Jinxin
    Luo, Jianshu
    [J]. 2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 4182 - 4182
  • [24] Parallel multilevel fast multipole method for solving large-scale problems
    Wu, F
    Zhang, YJ
    Oo, ZZ
    Li, EP
    [J]. IEEE ANTENNAS AND PROPAGATION MAGAZINE, 2005, 47 (04) : 110 - 118
  • [25] Petascale turbulence simulation using a highly parallel fast multipole method on GPUs
    Yokota, Rio
    Barba, L. A.
    Narumi, Tetsu
    Yasuoka, Kenji
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2013, 184 (03) : 445 - 455
  • [26] Massively parallel fast multipole method solutions of large electromagnetic scattering problems
    Waltz, Caleb
    Sertel, Kubilay
    Carr, Michael A.
    Usner, Brian C.
    Volakis, John L.
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2007, 55 (06) : 1810 - 1816
  • [27] Parallel multilevel fast multipole method for solving large scale electromagnetic problems
    Wu, F
    Li, EP
    Oo, ZZ
    Zhang, YJ
    [J]. 2004 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL ELECTROMAGNETICS AND ITS APPLICATIONS, PROCEEDINGS, 2004, : 96 - 99
  • [28] The fast multipole method on parallel clusters, multicore processors, and graphics processing units
    Darve, Eric
    Cecka, Cris
    Takahashi, Toru
    [J]. COMPTES RENDUS MECANIQUE, 2011, 339 (2-3): : 185 - 193
  • [29] A PARALLEL FAST MULTIPOLE METHOD FOR A SPACE-TIME BOUNDARY ELEMENT METHOD FOR THE HEAT EQUATION
    Watschinger, Raphael
    Merta, Michal
    Of, Guenther
    Zapletal, Jan
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2022, 44 (04): : C320 - C345
  • [30] Generalized Fast Multipole Method
    Letourneau, Pierre-David
    Cecka, Cristopher
    Darve, Eric
    [J]. 9TH WORLD CONGRESS ON COMPUTATIONAL MECHANICS AND 4TH ASIAN PACIFIC CONGRESS ON COMPUTATIONAL MECHANICS, 2010, 10