Statistical analysis of microarray data

被引:28
|
作者
Reimers, M [1 ]
机构
[1] NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1080/13556210412331327795
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Microarrays promise dynamic snapshots of cell activin but microarray results are unfortunately not straightforward to intepret. This article aims to distill the most useful practical results from the vast body of literature availalable on microarray data analysis. Topics covered include: experimental design issues, normalization, quality control, exploratory analysis, and tests for differential expression. Special attention is paid to the peculiarities of low-level analysis of Affymetrix chips, and the multiple testing problem in determining differential expression. The aim of this article is to provide useful answers to the most common practical issues in microarray data analysis. The main topics are preprocessing (normalization), and detecting differential expression. Subsidiary topics include experimental design, and exploratory analysis. Further discussion is found Lit the author's web page (http://discover.nci.nih.gov --> Notes on Microarray Data Analysis).
引用
收藏
页码:23 / 35
页数:13
相关论文
共 50 条
  • [21] A statistical framework for differential network analysis from microarray data
    Ryan Gill
    Somnath Datta
    Susmita Datta
    BMC Bioinformatics, 11
  • [22] An evaluation of statistical methods for DNA methylation microarray data analysis
    Li, Dongmei
    Xie, Zidian
    Le Pape, Marc
    Dye, Timothy
    BMC BIOINFORMATICS, 2015, 16
  • [24] Statistical methods and microarray data - Reply
    Shi, Leming
    Jones, Wendell D.
    Jensen, Roderick V.
    Wolfinger, Russell D.
    Kawasaki, Ernest S.
    Herman, Damir
    Guo, Lei
    Goodsaid, Federico M.
    Tong, Weida
    NATURE BIOTECHNOLOGY, 2007, 25 (01) : 26 - 27
  • [25] Microarray data warehouse allowing for inclusion of experiment annotations in statistical analysis
    Fellenberg, K
    Hauser, NC
    Brors, B
    Hoheisel, JD
    Vingron, M
    BIOINFORMATICS, 2002, 18 (03) : 423 - 433
  • [26] Microarray analysis of gene expression: considerations in data mining and statistical treatment
    Verducci, Joseph S.
    Melfi, Vincent F.
    Lin, Shili
    Wang, Zailong
    Roy, Sashwati
    Sen, Chandan K.
    PHYSIOLOGICAL GENOMICS, 2006, 25 (03) : 355 - 363
  • [27] goCluster integrates statistical analysis and functional interpretation of microarray expression data
    Wrobel, G
    Chalmel, F
    Primig, M
    BIOINFORMATICS, 2005, 21 (17) : 3575 - 3577
  • [28] Statistical methods for meta-analysis of microarray data: A comparative study
    Hu, PZ
    Greenwood, CMT
    Beyene, J
    INFORMATION SYSTEMS FRONTIERS, 2006, 8 (01) : 9 - 20
  • [29] Statistical Methods for Meta-Analysis of Microarray Data: A Comparative Study
    Pingzhao Hu
    Celia M. T. Greenwood
    Joseph Beyene
    Information Systems Frontiers, 2006, 8 : 9 - 20
  • [30] Identification of novel universal housekeeping genes by statistical analysis of microarray data
    Lee, Seram
    Jo, Minjoung
    Lee, Jungeun
    Koh, Sang Seok
    Kim, Soyoun
    JOURNAL OF BIOCHEMISTRY AND MOLECULAR BIOLOGY, 2007, 40 (02): : 226 - 231