Renormalized entropy of entanglement in relativistic field theory

被引:3
|
作者
Ibnouhsein, Issam [1 ,2 ]
Costa, Fabio [3 ,4 ]
Grinbaum, Alexei [1 ]
机构
[1] CEA Saclay, IRFU, LARSIM, F-91191 Gif Sur Yvette, France
[2] Univ Paris 11, F-91405 Orsay, France
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-1090 Vienna, Austria
来源
PHYSICAL REVIEW D | 2014年 / 90卷 / 06期
基金
奥地利科学基金会;
关键词
REEH-SCHLIEDER; NEWTON-WIGNER; QUANTUM; INEQUALITIES; LOCALIZATION; SYSTEMS; AREA;
D O I
10.1103/PhysRevD.90.065032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Entanglement is defined between subsystems of a quantum system, and at fixed time two regions of space can be viewed as two subsystems of a relativistic quantum field. The entropy of entanglement between such subsystems is ill-defined unless an ultraviolet cutoff is introduced, but it still diverges in the continuum limit. This behavior is generic for arbitrary finite-energy states, hence a conceptual tension with the finite entanglement entropy typical of nonrelativistic quantum systems. We introduce a novel approach to explain the transition from infinite to finite entanglement, based on coarse graining the spatial resolution of the detectors measuring the field state. We show that states with a finite number of particles become localized, allowing an identification between a region of space and the nonrelativistic degrees of freedom of the particles therein contained, and that the renormalized entropy of finite-energy states reduces to the entanglement entropy of nonrelativistic quantum mechanics.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Shape dependence of renormalized holographic entanglement entropy
    Anastasiou, Giorgos
    Moreno, Javier
    Olea, Rodrigo
    Rivera-Betancour, David
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (09)
  • [22] Finiteness of entanglement entropy in collective field theory
    Sumit R. Das
    Antal Jevicki
    Junjie Zheng
    [J]. Journal of High Energy Physics, 2022
  • [23] Finiteness of entanglement entropy in collective field theory
    Das, Sumit R.
    Jevicki, Antal
    Zheng, Junjie
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2022, 2022 (12)
  • [24] Entanglement entropy for logarithmic conformal field theory
    Alishahiha, Mohsen
    Astaneh, Amin Faraji
    Mozaffar, M. Reza Mohammadi
    [J]. PHYSICAL REVIEW D, 2014, 89 (06):
  • [25] Entanglement entropy in free quantum field theory
    Casini, H.
    Huerta, M.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (50)
  • [26] Is renormalized entanglement entropy stationary at RG fixed points?
    Igor R. Klebanov
    Tatsuma Nishioka
    Silviu S. Pufu
    Benjamin R. Safdi
    [J]. Journal of High Energy Physics, 2012
  • [27] Is renormalized entanglement entropy stationary at RG fixed points?
    Klebanov, Igor R.
    Nishioka, Tatsuma
    Pufu, Silviu S.
    Safdi, Benjamin R.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2012, (10):
  • [28] Renormalized holographic entanglement entropy for quadratic curvature gravity
    Anastasiou, Giorgos
    Araya, Ignacio J.
    Moreno, Javier
    Olea, Rodrigo
    Rivera-Betancour, David
    [J]. PHYSICAL REVIEW D, 2021, 104 (08)
  • [29] Entanglement entropy in scalar field theory on the fuzzy sphere
    Okuno, Shizuka
    Suzuki, Mariko
    Tsuchiya, Asato
    [J]. PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2016, 2016 (02):
  • [30] Holographic entanglement entropy in boundary conformal field theory
    Chang, En-Jui
    Chou, Chia-Jui
    Yang, Yi
    [J]. PHYSICAL REVIEW D, 2018, 98 (10)