Renormalized entropy of entanglement in relativistic field theory

被引:3
|
作者
Ibnouhsein, Issam [1 ,2 ]
Costa, Fabio [3 ,4 ]
Grinbaum, Alexei [1 ]
机构
[1] CEA Saclay, IRFU, LARSIM, F-91191 Gif Sur Yvette, France
[2] Univ Paris 11, F-91405 Orsay, France
[3] Univ Vienna, Fac Phys, A-1090 Vienna, Austria
[4] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-1090 Vienna, Austria
来源
PHYSICAL REVIEW D | 2014年 / 90卷 / 06期
基金
奥地利科学基金会;
关键词
REEH-SCHLIEDER; NEWTON-WIGNER; QUANTUM; INEQUALITIES; LOCALIZATION; SYSTEMS; AREA;
D O I
10.1103/PhysRevD.90.065032
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Entanglement is defined between subsystems of a quantum system, and at fixed time two regions of space can be viewed as two subsystems of a relativistic quantum field. The entropy of entanglement between such subsystems is ill-defined unless an ultraviolet cutoff is introduced, but it still diverges in the continuum limit. This behavior is generic for arbitrary finite-energy states, hence a conceptual tension with the finite entanglement entropy typical of nonrelativistic quantum systems. We introduce a novel approach to explain the transition from infinite to finite entanglement, based on coarse graining the spatial resolution of the detectors measuring the field state. We show that states with a finite number of particles become localized, allowing an identification between a region of space and the nonrelativistic degrees of freedom of the particles therein contained, and that the renormalized entropy of finite-energy states reduces to the entanglement entropy of nonrelativistic quantum mechanics.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Renormalized entanglement entropy
    Taylor, Marika
    Woodhead, William
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (08):
  • [2] Renormalized entanglement entropy
    Marika Taylor
    William Woodhead
    [J]. Journal of High Energy Physics, 2016
  • [3] Renormalized thermal entropy in field theory
    Cacciatori, Sergio L.
    Costa, Fabio
    Piazza, Federico
    [J]. PHYSICAL REVIEW D, 2009, 79 (02):
  • [4] Renormalized entanglement entropy on cylinder
    Shamik Banerjee
    Yuki Nakaguchi
    Tatsuma Nishioka
    [J]. Journal of High Energy Physics, 2016
  • [5] Renormalized entanglement entropy on cylinder
    Banerjee, Shamik
    Nakaguchi, Yuki
    Nishioka, Tatsuma
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2016, (03):
  • [6] Entanglement in relativistic quantum field theory
    Shi, Y
    [J]. PHYSICAL REVIEW D, 2004, 70 (10): : 105001 - 1
  • [7] Renormalized entanglement entropy flow in mass-deformed ABJM theory
    Kim, Kyung Kiu
    Kwon, O-Kab
    Park, Chanyong
    Shin, Hyeonjoon
    [J]. PHYSICAL REVIEW D, 2014, 90 (04):
  • [8] Renormalized entanglement entropy and curvature invariants
    Taylor, Marika
    Too, Linus
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2020, 2020 (12)
  • [9] Renormalized entanglement entropy and curvature invariants
    Marika Taylor
    Linus Too
    [J]. Journal of High Energy Physics, 2020
  • [10] Entanglement entropy and quantum field theory
    Calabrese, P
    Cardy, J
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,