NESTED DOMAIN DECOMPOSITION WITH POLARIZED TRACES FOR THE 2D HELMHOLTZ EQUATION

被引:12
|
作者
Zepeda-Nunez, Leonardo [1 ,2 ,3 ]
Demanev, Laurent [1 ,2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] MIT, Earth Resources Lab, Cambridge, MA 02139 USA
[3] Lawrence Berkeley Natl Lab, Computat Res Div, Berkeley, CA 94708 USA
来源
SIAM JOURNAL ON SCIENTIFIC COMPUTING | 2018年 / 40卷 / 03期
关键词
high-frequency; wavepropagation; Helmholtz equation; fast methods; DISCONTINUOUS GALERKIN METHODS; OPTIMIZED SCHWARZ METHODS; HUYGENS SWEEPING METHODS; WAVE-PROPAGATION; LINEAR-SYSTEMS; PRECONDITIONER; ALGORITHM; SCATTERING; MATRIX; CONVERGENCE;
D O I
10.1137/15M104582X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a solver for the two-dimensional high-frequency Helmholtz equation in heterogeneous, constant density, acoustic media, with online parallel complexity that scales empirically as O((N)(P)), where N is the number of volume unknowns, and P is the number of processors, as long as P = O(N-1/5). This sublinear scaling is achieved by domain decomposition, not distributed linear algebra, and improves on the P = O (N-1/8) scaling reported earlier in [L. Zepeda-Nunez and L. Demanet, J. Comput. Phys., 308 (2016), pp. 347-388]. The solver relies on a two-level nested domain decomposition: a layered partition on the outer level and a further decomposition of each layer in cells at the inner level. The Helmholtz equation is reduced to a surface integral equation (SIE) posed at the interfaces between layers, efficiently solved via a nested version of the polarized traces preconditioner [L. Zepeda-Nunez and L. Demanet, J. Comput. Phys., 308 (2016), pp. 347-388]. The favorable complexity is achieved via an efficient application of the integral operators involved in the SIE.
引用
收藏
页码:B942 / B981
页数:40
相关论文
共 50 条
  • [21] Convergence of parallel overlapping domain decomposition methods for the Helmholtz equation
    Gong, Shihua
    Gander, Martin J.
    Graham, Ivan G.
    Lafontaine, David
    Spence, Euan A.
    NUMERISCHE MATHEMATIK, 2022, 152 (02) : 259 - 306
  • [22] A Domain Decomposition Solver for the Discontinuous Enrichment Method for the Helmholtz Equation
    Farhat, C. (cfarhat@stanford.edu), 1600, Springer Verlag, Tiergartenstrasse 17, Heidelberg, D-69121, Germany (91):
  • [23] DOMAIN DECOMPOSITION WITH LOCAL IMPEDANCE CONDITIONS FOR THE HELMHOLTZ EQUATION WITH ABSORPTION
    Graham, Ivan G.
    Spence, Euan A.
    ZOU, Jun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (05) : 2515 - 2543
  • [24] A PARALLEL DOMAIN DECOMPOSITION METHOD FOR THE HELMHOLTZ EQUATION IN LAYERED MEDIA
    Heikkola, Erkki
    Ito, Kazufumi
    Toivanen, Jari
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (05): : C505 - C521
  • [25] Computing solutions for Helmholtz equation: Domain versus boundary decomposition
    Balabane, M
    MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, WAVES 2003, 2003, : 11 - 18
  • [26] Stable boundary element domain decomposition methods for the Helmholtz equation
    O. Steinbach
    M. Windisch
    Numerische Mathematik, 2011, 118 : 171 - 195
  • [27] The Arithmetic Mean Iterative Method for Solving 2D Helmholtz Equation
    Muthuvalu, Mohana Sundaram
    Akhir, Mohd Kamalrulzaman Md
    Sulaiman, Jumat
    Suleiman, Mohamed
    Dass, Sarat Chandra
    Singh, Narinderjit Singh Sawaran
    3RD INTERNATIONAL CONFERENCE ON FUNDAMENTAL AND APPLIED SCIENCES (ICFAS 2014): INNOVATIVE RESEARCH IN APPLIED SCIENCES FOR A SUSTAINABLE FUTURE, 2014, 1621 : 169 - 175
  • [28] Computation of discrete transparent boundary conditions for the 2D Helmholtz equation
    F. Schmidt
    Optical and Quantum Electronics, 1998, 30 : 427 - 441
  • [29] OPTIMAL SHAPE PARAMETER FOR MESHLESS SOLUTION OF THE 2D HELMHOLTZ EQUATION
    Mauricio-A, Londono
    Hebert, Montegranario
    CT&F-CIENCIA TECNOLOGIA Y FUTURO, 2019, 9 (02): : 15 - 35
  • [30] An optimization problem based on a Bayesian approach for the 2D Helmholtz equation
    Lili Guadarrama
    Carlos Prieto
    Elijah Van Houten
    Boletín de la Sociedad Matemática Mexicana, 2020, 26 : 1097 - 1111