Thermal stability of interstitial and substitutional Mn in ferromagnetic (Ga,Mn)As

被引:0
|
作者
Lima, T. A. L. [1 ]
Wahl, U. [1 ,2 ]
Costa, A. [2 ]
Augustyns, V [1 ]
Edmonds, K. W. [3 ]
Gallagher, B. L. [3 ]
Campion, R. P. [3 ]
Araujo, J. P. [4 ,5 ]
Correia, J. G. [2 ]
da Silva, M. R. [2 ]
Temst, K. [1 ]
Vantomme, A. [1 ]
Pereira, L. M. C. [1 ]
机构
[1] Katholieke Univ Leuven, Inst Kern & Stralingsfys, B-3001 Leuven, Belgium
[2] Univ Lisbon, Inst Super Tecn, Ctr Ciencias & Tecnol Nucl, P-2686953 Sacavem, Portugal
[3] Univ Nottingham, Sch Phys & Astron, Nottingham NG7 2RD, England
[4] Univ Porto, IFIMUP, P-4169007 Porto, Portugal
[5] Univ Porto, IN Inst Nanosci & Nanotechnol, P-4169007 Porto, Portugal
基金
欧盟地平线“2020”;
关键词
Magnetic semiconductors - Curie temperature - Ferromagnetism - Ferromagnetic materials;
D O I
10.1103/PhysRevB.100.144409
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In (Ga,Mn)As, a model dilute magnetic semiconductor, the electric and magnetic properties are strongly influenced by the lattice sites occupied by the Mn atoms. In particular, the highest Curie temperatures are achieved upon thermal annealing in a narrow temperature window around 200 degrees C, by promoting the diffusion of interstitial Mn towards the surface. In this work, we determined the thermal stability of both interstitial and substitutional Mn in ferromagnetic (Ga,Mn)As thin films, using the emission channeling technique. At a higher Mn concentration, the temperatures at which substitutional and interstitial Mn become mobile not only decrease, but also become closer to each other. These findings advance our understanding of self-compensation in (Ga,Mn)As by showing that the strong dependence of the Curie temperature on annealing temperature around 200 degrees C is a consequence of balance between diffusion of interstitial Mn and segregation of substitutional Mn.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Evaluation of the Ultrafast Thermal Manipulation of Magnetization Precession in Ferromagnetic Semiconductor (Ga,Mn)As
    Li Hang
    Zhang Xin-Hui
    CHINESE PHYSICS LETTERS, 2015, 32 (06)
  • [32] Evaluation of the Ultrafast Thermal Manipulation of Magnetization Precession in Ferromagnetic Semiconductor (Ga,Mn) As
    李杭
    张新惠
    Chinese Physics Letters, 2015, (06) : 154 - 158
  • [33] Diode Heterostructures with a Ferromagnetic (Ga,Mn)As Layer
    B. N. Zvonkov
    O. V. Vikhrova
    Yu. A. Danilov
    M. V. Dorokhin
    I. L. Kalentyeva
    A. V. Kudrin
    A. V. Zdoroveyshchev
    E. A. Larionova
    V. A. Koval’skii
    O. A. Soltanovich
    Physics of the Solid State, 2020, 62 : 423 - 430
  • [34] Weak localization in ferromagnetic (Ga,Mn)As nanostructures
    Neumaier, D.
    Wagner, K.
    Geissler, S.
    Wurstbauer, U.
    Sadowski, J.
    Wegscheider, W.
    Weiss, D.
    PHYSICAL REVIEW LETTERS, 2007, 99 (11)
  • [35] Ferromagnetic semiconductors: moving beyond (Ga, Mn)As
    Macdonald, AH
    Schiffer, P
    Samarth, N
    NATURE MATERIALS, 2005, 4 (03) : 195 - 202
  • [36] Magnetization relaxation in (Ga,Mn)As ferromagnetic semiconductors
    Sinova, J
    Jungwirth, T
    Liu, X
    Sasaki, Y
    Furdyna, JK
    Atkinson, WA
    MacDonald, AH
    PHYSICAL REVIEW B, 2004, 69 (08)
  • [37] Magnetization dissipation in the ferromagnetic semiconductor (Ga,Mn)As
    Hals, Kjetil M. D.
    Brataas, Arne
    PHYSICAL REVIEW B, 2011, 84 (10)
  • [38] Remnant magnetoresistance in ferromagnetic (Ga,Mn)As nanostructures
    Figielski, T.
    Wosinski, T.
    Morawski, A.
    Makosa, A.
    Wrobel, J.
    Sadowski, J.
    APPLIED PHYSICS LETTERS, 2007, 90 (05)
  • [39] Magnetoresistive memory in ferromagnetic (Ga,Mn)As nanostructures
    Wosinski, T.
    Figielski, T.
    Morawski, A.
    Makosa, A.
    Szymczak, R.
    Wrobel, J.
    Sadowski, J.
    MATERIALS SCIENCE-POLAND, 2008, 26 (04): : 1097 - 1104
  • [40] Theory of spin waves in ferromagnetic (Ga,Mn)As
    Werpachowska, A.
    Dietl, T.
    PHYSICS OF SEMICONDUCTORS: 30TH INTERNATIONAL CONFERENCE ON THE PHYSICS OF SEMICONDUCTORS, 2011, 1399